1 / 59

The Universe is expanding

The Universe is expanding. The Universe is filled with radiation. The Early Universe was Hot & Dense. The Early Universe was a Cosmic Nuclear Reactor!. ~ 100 s after the Big Bang Primordial Nucleosynthesis. ~ 1 - 10 Gyr LSS.

ashtyn
Download Presentation

The Universe is expanding

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Universe is expanding • The Universe is filled with radiation • The Early Universe was Hot & Dense • The Early Universe was a Cosmic Nuclear Reactor!

  2. ~ 100 s after the Big Bang Primordial Nucleosynthesis ~ 1 - 10 Gyr LSS ~ 0.1 s after the Big Bang Neutrinos Decouple ~ 400 kyr after the Big Bang Relic Photons (CMB) are free

  3. Neutron Abundance vs. Time / Temperature p + en + e … Rates set byn “Freeze – Out” ? Wrong! (n/p)eq BBN “Begins”  Decay

  4. nmeasurements vs. time Statistical Errors versus SystematicErrors! 885.7  0.8 sec

  5. BBN “Begins” at T  70 keV when n / p  1 / 7 Coulomb Barriers and absence of free neutrons terminate BBN at T  30 keV tBBN  4  24 min.

  6. Pre - BBN Post - BBN Only n & p Mainly H & 4He

  7. Baryon Density Parameter   nN /n ; 10    = 274 Bh2 where : B  B /c and : h  H0 /100 km/s/Mpc  0.7 Note : Baryons  Nucleons

  8. Evolution of mass - 2 10 More nucleons  less D

  9. Two pathways to mass - 3 More nucleons  less mass - 3

  10. Two pathways to mass - 7

  11. BBN abundances of masses – 6, 9 –11 Abundances Are Very Small !

  12. BBN – Predicted Primordial Abundances BBN Abundances of D, 3He, 7Li are RATE (Density) LIMITED 7Li 7Be D, 3He, 7Li are potential BARYOMETERS

  13. Use BBN (D/H) P vs. 10to constrain B Predict (D/H)P “Measure” (D/H) P Infer B (B) at 20 Min.

  14. Y is very weakly dependent on the nucleon abundance All/most neutrons are incorporated in 4He n/p  1/7  Y  0.25 Y4He Mass Fraction Y 4y/(1 + 4y) y  n(He)/n(H) YP DOES depend on the competition between Γwk & H

  15. 4He (mass fraction Y) is NOT Rate Limited • 4He IS n/p Limited Y is sensitive to the EXPANSION RATE ( H 1/2 ) • Expansion Rate Parameter : S  H´/H • S  H´/H  (´/)1/2 (1 + 7N /43)1/2 • where ´   + N andN  3 + N

  16. The Expansion Rate (H  Hubble Parameter) Is A Probe Of Non-Standard Physics • S2  (H/ H)2= G/G  1 + 7N /43 • * S can be parameterized by N N (-) /  and N  3 + N NOTE : G/ G = S2 1 + 7N / 43 • 4He is sensitive to S (N) ; D probes B

  17. 4Heis an early – Universe Chronometer Y vs. D/H N =2, 3, 4 (S = 0.91, 1.00, 1.08) Y0.013N 0.16 (S – 1)

  18. Isoabundance Contours for 105(D/H)P & YP YP & yD  105 (D/H) 4.0 2.0 3.0 0.25 0.24 0.23 D&4HeIsoabundance Contours Kneller & Steigman (2004)

  19. Kneller & Steigman (2004) & Steigman (2007) yDP 105(D/H)P = 46.5 (1 ± 0.03) D-1.6 YP = (0.2386 ±0.0006) + He / 625 y7  1010(7Li/H) = (1.0 ± 0.1) (LI)2 / 8.5 where : D 10 – 6 (S – 1) He  10 – 100 (S – 1) Li  10 – 3 (S – 1)

  20. Post – BBN Evolution • As gas cycles through stars,D is only DESTROYED • As gas cycles through stars,3He is DESTROYED , • PRODUCED and, some 3He SURVIVES • Stars burn H to 4He (and produce heavy elements) •  4He INCREASES (along with CNO) • Cosmic Rays and SOME Stars PRODUCE 7Li BUT, • 7Li is DESTROYED in most stars

  21. Observing D in QSOALS Ly -  Absorption

  22. Towards Primordial Deuterium Observations of Deuterium In 7 High-Redshift, Low-Metallicity QSO Absorption Line Systems 105(D/H)P = 2.7 ± 0.2 (Weighted Mean of D/H) (Weighted mean of log (D/H) 105(D/H)P = 2.8 ± 0.2)

  23. (D/H)obs + BBNpred10 =6.0± 0.3 BBN V. Simha & G. S.

  24. CMB Temperature Anisotropy Spectrum (T2 vs. ) Depends On The Baryon Density  10=4.5,6.1,7.5 V. Simha & G. S. The CMB provides an early - Universe Baryometer

  25. CMB + LSS10 =6.1±0.2 10Likelihood CMB V. Simha & G. S.

  26. Primordial Deuterium Predicted BBN + CMB/LSS  105(D/H)P = 2.6 ± 0.1

  27. BBN (~ 20 min) & CMB (~ 380 kyr) AGREE 10Likelihoods CMB BBN V. Simha & G. S.

  28. Oxygen Gradient In The Galaxy

  29. 3He Measured In Galactic HII Regions SBBN

  30. 3He Measured In Galactic HII Regions SBBN

  31. 4He Observed In Extragalactic H  Regions As O/H  0, Y  0 SBBN Prediction : YP = 0.248 K. Olive YP = 0.240 ± 0.006 ( Or : YP < 0.255 @ 2 σ )

  32. SBBN 10Likelihoods from D and 4He AGREE ? to be continued …

  33. But ! Lithium – 7 Is (ALSO) A Problem [Li] ≡ 12 + log(Li/H) [Li]SBBN 2.6 – 2.7 [Li]OBS 2.1 Li too low !

  34. Baryon Density Determinations: Consistent ? Late - Decaying NLSP ? ? N< 3 ? Observational Uncertainties Or New Physics?

  35. YP vs. (D/H)P for N = 2, 3, 4 N  3 ?

  36. A Non-Standard BBN Example (Neff < 3) Late Decay of a Massive Particle Kawasaki,Kohri&Sugiyama & Low Reheat Temp. (TR  MeV) Neff<3  Relic Neutrinos Not Fully (Re)Populated

  37. Isoabundance Contours for 105(D/H)P & YP YP & yD  105 (D/H) 4.0 3.0 2.0 0.25 0.24 0.23 Kneller & Steigman (2004)

  38. Nvs.10 From BBN (D & 4He) ( YP < 0.255 @ 2 σ ) BBN Constrains N N < 4 N> 1 V. Simha & G. S.

  39. CMB Temperature Anisotropy Spectrum Depends on the Radiation Density R(SorN)   N =1, 3,5 V. Simha & G. S. The CMB / LSS is an early - Universe Chronometer

  40. N Is Degenerate With mh2 The degeneracy can be broken - partially - by H0 (HST) and LSS 1 + zeq =m / R 1 + zeq≈ 3200 V. Simha & G. S.

  41. CMB + LSS + HST Prior on H0 Nvs.10 CMB + LSS Constrain 10 V. Simha & G. S.

  42. Use the CMB + LSS to boundη10and N Use BBN to predict YP , yDP , yLiP (solid black) Compare to the observed abundances (dashed) Korn et al. 4He D 7Li  ?  V. Simha & G. S.

  43. Even for N  3 Y + DH LiH 4.0  0.7 x 1010 yLi  1010 (Li/H) 4.0 3.0 2.0 0.25 4.0 0.24 0.23 Li depleted/diluted in Pop  stars ? Kneller & Steigman (2004)

  44. Alternative to N  3 (S  1) eDegeneracy (Non – Zero Lepton Number) YP & yD 105 (D/H) For e=e/kT  0 (more e than anti - e) n/p  exp( m/kT  e )  n/p   YP  4.0 3.0 2.0 0.23 0.24 0.25 YP probes Lepton Asymmetry D & 4HeIsoabundance Contours Kneller & Steigman (2004)

  45. Kneller & Steigman (2004) & Steigman (2007) yDP 105(D/H)P = 46.5 (1 ± 0.03) D-1.6 YP = (0.2386 ±0.0006) + He / 625 y7  1010(7Li/H) = (1.0 ± 0.1) (LI)2 / 8.5 where : D 10 + 5 e/ 4 He  10 – 574 e/ 4 Li  10 – 7 e/ 4

  46. eDegeneracy (Non – Zero Lepton Number) YP & yD  105 (D/H) For N=3 : e=0.0350.026 2.0 4.0 3.0 0.23 0.24 & 10 = 5.9  0.4  0.25 (V. Simha & G. S.)

  47. BBN Constraints (D & 4He) On eFor N = 3 e = 0.035 ± 0.026 10= 5.9 ± 0.3 V. Simha & G.S.

  48. Even With Non - Zero eDegeneracy, The 7Li Problem Persists yLi  1010 (7Li/H) [Li] = 2.6  0.7 Still ! 4.0 2.0 4.0 3.0 [Li] = 2.7  0.7 with CFO 2008 results 0.23 0.24 Li depleted/diluted in Pop  stars ? 0.25 Or, Late Decay of (Charged) NLSP ?

More Related