590 likes | 814 Views
The Universe is expanding. The Universe is filled with radiation. The Early Universe was Hot & Dense. The Early Universe was a Cosmic Nuclear Reactor!. ~ 100 s after the Big Bang Primordial Nucleosynthesis. ~ 1 - 10 Gyr LSS.
E N D
The Universe is expanding • The Universe is filled with radiation • The Early Universe was Hot & Dense • The Early Universe was a Cosmic Nuclear Reactor!
~ 100 s after the Big Bang Primordial Nucleosynthesis ~ 1 - 10 Gyr LSS ~ 0.1 s after the Big Bang Neutrinos Decouple ~ 400 kyr after the Big Bang Relic Photons (CMB) are free
Neutron Abundance vs. Time / Temperature p + en + e … Rates set byn “Freeze – Out” ? Wrong! (n/p)eq BBN “Begins” Decay
nmeasurements vs. time Statistical Errors versus SystematicErrors! 885.7 0.8 sec
BBN “Begins” at T 70 keV when n / p 1 / 7 Coulomb Barriers and absence of free neutrons terminate BBN at T 30 keV tBBN 4 24 min.
Pre - BBN Post - BBN Only n & p Mainly H & 4He
Baryon Density Parameter nN /n ; 10 = 274 Bh2 where : B B /c and : h H0 /100 km/s/Mpc 0.7 Note : Baryons Nucleons
Evolution of mass - 2 10 More nucleons less D
Two pathways to mass - 3 More nucleons less mass - 3
BBN abundances of masses – 6, 9 –11 Abundances Are Very Small !
BBN – Predicted Primordial Abundances BBN Abundances of D, 3He, 7Li are RATE (Density) LIMITED 7Li 7Be D, 3He, 7Li are potential BARYOMETERS
Use BBN (D/H) P vs. 10to constrain B Predict (D/H)P “Measure” (D/H) P Infer B (B) at 20 Min.
Y is very weakly dependent on the nucleon abundance All/most neutrons are incorporated in 4He n/p 1/7 Y 0.25 Y4He Mass Fraction Y 4y/(1 + 4y) y n(He)/n(H) YP DOES depend on the competition between Γwk & H
4He (mass fraction Y) is NOT Rate Limited • 4He IS n/p Limited Y is sensitive to the EXPANSION RATE ( H 1/2 ) • Expansion Rate Parameter : S H´/H • S H´/H (´/)1/2 (1 + 7N /43)1/2 • where ´ + N andN 3 + N
The Expansion Rate (H Hubble Parameter) Is A Probe Of Non-Standard Physics • S2 (H/ H)2= G/G 1 + 7N /43 • * S can be parameterized by N N (-) / and N 3 + N NOTE : G/ G = S2 1 + 7N / 43 • 4He is sensitive to S (N) ; D probes B
4Heis an early – Universe Chronometer Y vs. D/H N =2, 3, 4 (S = 0.91, 1.00, 1.08) Y0.013N 0.16 (S – 1)
Isoabundance Contours for 105(D/H)P & YP YP & yD 105 (D/H) 4.0 2.0 3.0 0.25 0.24 0.23 D&4HeIsoabundance Contours Kneller & Steigman (2004)
Kneller & Steigman (2004) & Steigman (2007) yDP 105(D/H)P = 46.5 (1 ± 0.03) D-1.6 YP = (0.2386 ±0.0006) + He / 625 y7 1010(7Li/H) = (1.0 ± 0.1) (LI)2 / 8.5 where : D 10 – 6 (S – 1) He 10 – 100 (S – 1) Li 10 – 3 (S – 1)
Post – BBN Evolution • As gas cycles through stars,D is only DESTROYED • As gas cycles through stars,3He is DESTROYED , • PRODUCED and, some 3He SURVIVES • Stars burn H to 4He (and produce heavy elements) • 4He INCREASES (along with CNO) • Cosmic Rays and SOME Stars PRODUCE 7Li BUT, • 7Li is DESTROYED in most stars
Observing D in QSOALS Ly - Absorption
Towards Primordial Deuterium Observations of Deuterium In 7 High-Redshift, Low-Metallicity QSO Absorption Line Systems 105(D/H)P = 2.7 ± 0.2 (Weighted Mean of D/H) (Weighted mean of log (D/H) 105(D/H)P = 2.8 ± 0.2)
(D/H)obs + BBNpred10 =6.0± 0.3 BBN V. Simha & G. S.
CMB Temperature Anisotropy Spectrum (T2 vs. ) Depends On The Baryon Density 10=4.5,6.1,7.5 V. Simha & G. S. The CMB provides an early - Universe Baryometer
CMB + LSS10 =6.1±0.2 10Likelihood CMB V. Simha & G. S.
Primordial Deuterium Predicted BBN + CMB/LSS 105(D/H)P = 2.6 ± 0.1
BBN (~ 20 min) & CMB (~ 380 kyr) AGREE 10Likelihoods CMB BBN V. Simha & G. S.
4He Observed In Extragalactic H Regions As O/H 0, Y 0 SBBN Prediction : YP = 0.248 K. Olive YP = 0.240 ± 0.006 ( Or : YP < 0.255 @ 2 σ )
SBBN 10Likelihoods from D and 4He AGREE ? to be continued …
But ! Lithium – 7 Is (ALSO) A Problem [Li] ≡ 12 + log(Li/H) [Li]SBBN 2.6 – 2.7 [Li]OBS 2.1 Li too low !
Baryon Density Determinations: Consistent ? Late - Decaying NLSP ? ? N< 3 ? Observational Uncertainties Or New Physics?
YP vs. (D/H)P for N = 2, 3, 4 N 3 ?
A Non-Standard BBN Example (Neff < 3) Late Decay of a Massive Particle Kawasaki,Kohri&Sugiyama & Low Reheat Temp. (TR MeV) Neff<3 Relic Neutrinos Not Fully (Re)Populated
Isoabundance Contours for 105(D/H)P & YP YP & yD 105 (D/H) 4.0 3.0 2.0 0.25 0.24 0.23 Kneller & Steigman (2004)
Nvs.10 From BBN (D & 4He) ( YP < 0.255 @ 2 σ ) BBN Constrains N N < 4 N> 1 V. Simha & G. S.
CMB Temperature Anisotropy Spectrum Depends on the Radiation Density R(SorN) N =1, 3,5 V. Simha & G. S. The CMB / LSS is an early - Universe Chronometer
N Is Degenerate With mh2 The degeneracy can be broken - partially - by H0 (HST) and LSS 1 + zeq =m / R 1 + zeq≈ 3200 V. Simha & G. S.
CMB + LSS + HST Prior on H0 Nvs.10 CMB + LSS Constrain 10 V. Simha & G. S.
Use the CMB + LSS to boundη10and N Use BBN to predict YP , yDP , yLiP (solid black) Compare to the observed abundances (dashed) Korn et al. 4He D 7Li ? V. Simha & G. S.
Even for N 3 Y + DH LiH 4.0 0.7 x 1010 yLi 1010 (Li/H) 4.0 3.0 2.0 0.25 4.0 0.24 0.23 Li depleted/diluted in Pop stars ? Kneller & Steigman (2004)
Alternative to N 3 (S 1) eDegeneracy (Non – Zero Lepton Number) YP & yD 105 (D/H) For e=e/kT 0 (more e than anti - e) n/p exp( m/kT e ) n/p YP 4.0 3.0 2.0 0.23 0.24 0.25 YP probes Lepton Asymmetry D & 4HeIsoabundance Contours Kneller & Steigman (2004)
Kneller & Steigman (2004) & Steigman (2007) yDP 105(D/H)P = 46.5 (1 ± 0.03) D-1.6 YP = (0.2386 ±0.0006) + He / 625 y7 1010(7Li/H) = (1.0 ± 0.1) (LI)2 / 8.5 where : D 10 + 5 e/ 4 He 10 – 574 e/ 4 Li 10 – 7 e/ 4
eDegeneracy (Non – Zero Lepton Number) YP & yD 105 (D/H) For N=3 : e=0.0350.026 2.0 4.0 3.0 0.23 0.24 & 10 = 5.9 0.4 0.25 (V. Simha & G. S.)
BBN Constraints (D & 4He) On eFor N = 3 e = 0.035 ± 0.026 10= 5.9 ± 0.3 V. Simha & G.S.
Even With Non - Zero eDegeneracy, The 7Li Problem Persists yLi 1010 (7Li/H) [Li] = 2.6 0.7 Still ! 4.0 2.0 4.0 3.0 [Li] = 2.7 0.7 with CFO 2008 results 0.23 0.24 Li depleted/diluted in Pop stars ? 0.25 Or, Late Decay of (Charged) NLSP ?