o conceito de coes o verdadeira ajuda a entender o comportamento mec nico dos solos n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
O conceito de coesão verdadeira ajuda a entender o comportamento mecânico dos solos? PowerPoint Presentation
Download Presentation
O conceito de coesão verdadeira ajuda a entender o comportamento mecânico dos solos?

Loading in 2 Seconds...

play fullscreen
1 / 37

O conceito de coesão verdadeira ajuda a entender o comportamento mecânico dos solos? - PowerPoint PPT Presentation


  • 124 Views
  • Uploaded on

O conceito de coesão verdadeira ajuda a entender o comportamento mecânico dos solos?. Emanuel Maranha das Neves Instituto Superior Técnico. Sumário.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'O conceito de coesão verdadeira ajuda a entender o comportamento mecânico dos solos?' - tab


Download Now An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
o conceito de coes o verdadeira ajuda a entender o comportamento mec nico dos solos

O conceito de coesão verdadeira ajuda a entender o comportamento mecânico dos solos?

Emanuel Maranha das Neves

Instituto Superior Técnico

sum rio
Sumário

O objectivo principal é mostrar que o conceito mecânico de coesão, fundamentado sobretudo na adesão entre partículas, não só não descreve clara e adequadamente o comportamento mecânico dos solos, como pode ter consequências práticas indesejáveis.

pressupostos i
Pressupostos (I)

Tratar-se-á apenas de solos, isto é, materiais particulados e sem ligações cimentícias entre as particulas.

a) c’>0(“true cohesion”):rocha. b) c’=0: solo (argila ou areia)

Manuel Rocha (1973); Bolton (1979); Atkinson (1993)

pressupostos ii
Pressupostos (II)

Podem ainda ser abrangidos os casos de ocorrência de ligações cimentícias fracas, facilmente destruídas em resultado das deformações conducentes ao estado crítico (rotura).

No caso de ligações cimentícias mais fortes, estar-se-á noutro domínio, o das argilas rijas/rochas brandas e o das rochas propriamente ditas.

pressupostos iii
Pressupostos (III)

As considerações que seguidamente serão apresentadas dizem respeito a solos saturados (embora podendo ser estendidas aos solos não saturados).

Os comportamentos, nomeadamente a rotura, são sempre descritos em termos de tensões efectivas (ainda que de forma implícita, como sucede no caso do comportamento não drenado).

m ltiplas designa es para a coes o
Múltiplas designações para a coesão

Cohesion – coesão

Effective cohesion – coesão efectiva

True cohesion – coesão verdadeira

Apparent cohesion – coesão aparente*

Undrained cohesion – coesão não drenada

Peak cohesion – coesão de pico

Cohesion intercept – coesão de intersecção

* Aparente pode significar evidente, manifesto ou então, fictício, falso.

um crit rio de rotura n o pode ser definido apenas com base em tens es como na ms cl ssica
Um critério de rotura não pode ser definido apenas com base em tensões, como na MS clássica

Mecânica dos solos clássica

(critério de rotura de Mohr-Coulomb)

τ=σ’tg φ’

τ=c’+ σ’tg φ’

Mecânica dos solos dos estados críticos

(rotura definida em termos de tensões e deformações)

q = Μp’

v = Γ – λ ln p’

crit rio de rotura de mohr coulomb
Critério de rotura de Mohr-Coulomb

τ =

σ’ tg φ’

τ =

c’+ σ’tg φ’

crit rio de rotura de acordo com a msec conceito de estado
Critério de rotura de acordo com a MSECConceito de estado

q = M p’ ; v = Γ- λ ln p’

τ = σ’ tgφ’ ; e = eo - Cc log σ’

Atkinson (1993)

slide10

Determinação da resistência no estado crítico (qc, pc’,v)Ensaio triaxial CD, argila de Santa Clara (M=1,1; λ=0,103; κ=0,011; OCR=1,75) σcons=200kPa

q = M p’

q = f (εs)

v = Γ- λ ln p’

Maranha das Neves (1975)

Maranha das Neves (1975)

o modelo friccional para os solos
O modelo friccional para os solos

É inquestionávelque mesmo as argilas, NC ou ligeiramente OC, resistem apenas por atrito.

Argila de Santa Clara, ligeiramente OC. (LL=47,6%; IP=26,5%). Ensaios CD, muito lentos (≈0,005 mm/min) (Maranha das Neves, 1969)

envolvente de mohr coulomb curva ensaio triaxial de enrocamento basalto
Envolvente de Mohr-Coulomb curvaEnsaio triaxial de enrocamento (basalto)

Maranha das Neves & Veiga Pinto (1988)

slide13
Dum ponto de vista microestrutural, é espectável que, durante a compressão, aumentando as forças interparticulares, a distância média entre partículas diminua.

Do ponto de vista macroestrutural, a equação

v = Γ – λ ln p’

estabelece que o volume ocupado pela unidade de volume de particulas em escoamento (v) diminui com o aumento do logarítmo da tensão efectiva (p’).

A abordagem da MSEC é macroestrutural, visa a utilização da mecânica dos meios contínuos e da elastoplasticidade com endurecimento (sentido lato) .

dilat ncia d v d s
Dilatância,ψ= - dεv / dεs

τAdx – σ’Ady = μσ’ Adx (energia de carregamento total) (trabalho friccional)

q dεs+p’dεv = Mp’|dεs |

(em termos dos invariantes q e p’)

Taylor (1948); Schofield & Wroth (1968)

resist ncia atrito dilat ncia representa o no plano q p
Resistência: atrito + dilatância(representação no plano q;p’)

Atkinson (1993)

qp’ = M pp’ + pp’ (δεv / δεs)p

envolvente dos estados de pico e dilat ncia
Envolvente dos estados de pico e dilatância

Notar que para tensões efectivas muito inferiores às usadas nos ensaios comuns (OCR muito elevadas), a envolvente dos estados de pico é acentuadamente curva em direcção à origem.

slide17

Interpretação dos resultados de resistências de pico

Envolvente curva das resistências de pico num gráfico (τ ; σ’).

Forma incorrecta de interpretação dos resultados das resistências de pico.

Powrie (1997)

solos densos rijos e solos soltos moles secos e h midos na terminologia da msec
Solos densos (rijos) e solos soltos (moles)Secos e húmidos na terminologia da MSEC

Há interesse em saber se um solo é denso na medida em que, se assim suceder, exibe dilatância positiva.

Para o saber é necessário referenciá-lo em relação ao ecrítico correspondente ao valor de σ’ a que está submetido.

Dilatância negativa (lado húmido)

Dilatância positiva (lado seco)

representa o de mohr coulomb dos estados de pico ensaio de corte directo
Representação de Mohr-Coulomb dos estados de pico(ensaio de corte directo)

τ =c’pe + σ’p tgφ’p

Notar que:

φ’p< φ’c

e,

para baixos valores de σ’, a equação não dá os valores de pico.

Atkinson (1993)

Isto significa que c’pe não é a resistência de corte do solo para σ’ = 0.

É apenas um parâmetro para definir a equação de Mohr-Coulomb.

representa o de mohr coulomb dos estados de pico ensaio triaxial
Representação de Mohr-Coulomb dos estados de pico(ensaio triaxial)

qp = Gpv+ Hp pp’

Hp – gradiente

Gpv – intersecção no eixo dos q, não é uma tensão de pico para p’ ≈ 0.

OT – “tension cut-off”, i. e., linha limite dos estados correspondentes a tensões efectivas negativas (cimentação, por ex.).

Atkinson (1993)

dilat ncia versus coes o
Dilatânciaversuscoesão

A dilatância varia com δεs e p’, passa por um máximo (que depende de p’ e da OCR) e descreve uma situação de transição para o estado crítico (rotura), no qual se anula (tgψ = 0).

Pelo contrário, a coesão, de acordo com o critério de Mohr-Coulomb, mantém um valor constante, não só independente da tensão normal, como da deformação.

escolha de par metros de projecto no caso de argilas oc
Escolha de parâmetros de projecto no caso de argilas OC

Optando por uma abordagem conservativa:

τ = σ’tgφc’

(φc’- medido em triaxial com a argila remoldada saturada).

escolha de par metros de projecto no caso de argilas oc1
Escolha de parâmetros de projecto no caso de argilas OC

Pretendendo usar resistências de pico:

τ = σ’tgφ’máx= σ’tg (φc’+ψ)

(φ’máx – medido em triaxial em amostras indeformadas)

Neste caso é indispensável ter a certeza que o maciço argiloso não sofreu nem sofrerá rotura!

slide24

Sucção O maciço de argila mantém uma parede vertical? A areia mantém um talude de inclinação superior ao seu φc’? Apenas o resultado do efeito de p’ devido à sucção (p’ será facilmente alterado se, por exemplo, variarem as condições atmosféricas). O comportamento é puramente friccional.

Vala na zona de contacto entre o núcleo e o filtro de jusante na barragem de Keddara

resist ncia ao corte n o drenada s u
Resistência ao corte não drenada (su)

A resistência não drenada definida nestes termos retem o espírito da velha noção de coesão, mas não contradiz minimamente o modelo friccional que se advoga para os solos.

Atkinson (1993)

o papel da qu mica coloidal na quantifica o do comportamento mec nico das argilas
O papel da química coloidal na quantificação do comportamento mecânico das argilas

Forças entre partículas de argila

Distância muito próxima

Forças de “solvation/hydratation”

Forças de repulsão de Born

Distância menos próxima

Repulsãoda dupla camada

Atracção de van der Waals

Santamarina, Klein & Fam (2001)

o papel da qu mica coloidal na quantifica o do comportamento mec nico das argilas1
O papel da química coloidal na quantificação do comportamento mecânico das argilas

Lambe & Wihtman: “…os princípios da química coloidal têm dado uma ajuda quantitativamente reduzida para o estudo do comportamento das argilas”.

Talvez mais adequadamente se devesse dizer que se trata de uma pequena ajuda para o estudo quantitativo do comportamento das argilas.

visualiza o da rela o entre as dimens es de part culas de argila silte e areia
Visualização da relação entre as dimensões de partículas de argila, silte e areia

Maranha das Neves (2004)

A engenharia civil geotécnica, na prática, não é confrontada com formações constituídas por argilas puras (ao contrário da indústria cerâmica, etc.).

for as grav ticas e for as resultantes da atrac o repuls o entre part culas
Forças gravíticas e forças resultantes da atracção/repulsão entre partículas

Maciço terroso

As forças de atracção/repulsão são irrelevantes face às forças gravitacionais, não de uma só partícula, mas da massa total de solo sobrejacente.

Suspensão aquosa

As forças de natureza gravítica são irrelevantes (comportamento coloidal).

slide31
Forças gravíticas e forças resultantes da atracção/repulsão entre partículas (mecanismo de auto-filtragem)

Maranha das Neves (1991)

conclus es i
Conclusões (I)

A coesão (comportamento com base no fenómeno físico da adesão) não explica de modo capaz o comportamento mecânico das argilas OC.

Existem resistências de pico (para εs normalmente muito inferiores às correspondentes ao estado crítico) que só podem ser explicadas pela dilatância.

Daí que um critério de rotura para solos não possa ser apenas descrito num espaço de tensões (caso dos critérios de Mohr-Coulomb e Tresca).

conclus es ii
Conclusões (II)

A interpretação do comportamento associado às resistências de pico dos solos deve basear-se na combinação

atrito + dilatância

em vez de

atrito + coesão

conclus es iii
Conclusões (III)

O modelo baseado na coesão efectiva tem frequentemente consequências práticas indesejáveis no domínio da segurança.

O conceito de coesão (adesão entre partículas) não deve ser usado nos conceitos básicos do comportamento mecânico dos solos.

Atendendo aos seus fundamentos, deve recorrer-se, no ensino e na prática, à Mecânica dos Solos dos Estados Críticos.

conclus es iv
Conclusões (IV)

.

Não devem ser usadas as designações solos coesivos e, por maioria de razão, a de solos não coesivos, pois introduzem confusão no domínio do ensino e enviesam a prática da engenharia civil geotécnica ao estabelecerem uma permanente ligação com um modelo de comportamento errado.

conclus es vi
Conclusões (VI)

Deve usar-se a designação solos argilosos (argilas) em vez de solos coesivos e solos arenosos (areias) em vez de solos não coesivos.

conclus es v
Conclusões (V)

O que marca realmente a diferença de comportamento mecânico entre estes solos tipo é afinal uma propriedade hidráulica: a respectiva permeabilidade.