tam logaritmik fonksiyon n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Tam Logaritmik Fonksiyon PowerPoint Presentation
Download Presentation
Tam Logaritmik Fonksiyon

Loading in 2 Seconds...

  share
play fullscreen
1 / 26

Tam Logaritmik Fonksiyon - PowerPoint PPT Presentation

220 Views
Download Presentation
Tam Logaritmik Fonksiyon
An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Tam Logaritmik Fonksiyon X3 Y X2 X2 b2>1 0<b2<1 Y2 b2<0 Y1 (X3 sabit tutulduğunda)

  2. Tam Logaritmik Fonksiyon lnY =lnb1 + b2 lnX2+ b3 lnX3 + ... + bk lnXk + u lne Y* =b1 *+ b2 X2*+ b3 X3* + ... + bk Xk* + u

  3. Tam Logaritmik Fonksiyon

  4. Uygulama 4.3 (207-210)

  5. Uygulama 4.3 (207-210)

  6. Uygulama 4.3 (207-210)

  7. Uygulama 4.3 (207-210) = 4.0458 = 4.9615 Sx*2 =7.3986 Sy*x* =2.6911

  8. Uygulama 4.3 (207-210) = 0.3637 = 4.0458 - (0.3637) 4.9615 = 2.2413 [ln(9.4046) = 2.2413]

  9. Üretim Fonksiyonu Y= Üretim X2=Emek ; X3=Sermaye = Emeğin Marjinal Verimliliği = Sermayenin Marjinal Verimliliği lnY = -3.4485 + 1.5255 lnX2 + 0.4858 lnX3 (t) (-1.43) (2.87) (4.82) n=15 Düz-R2= 0.8738

  10. Yarı-Logaritmik FonksiyonLog-Doğ Model(Üstel Model)

  11. Yarı-Logaritmik FonksiyonLog-Doğ Model(Üstel Model) lnY = b1 +b2 X+ u = ( b2Y ) = b2 X

  12. Artış Hızı ModeliLog-Doğ Model(Üstel Model) lnY = b1 +b2 t + u r = (Antilog b2 - 1) . 100 Y= İş hacmi(1983-1988) r = (Antilog 0.131 - 1) . 100 = (1.13997 - 1) . 100 = (0.13997 1) . 100 = % 14

  13. Ücret ModeliLog-Doğ Model(Üstel Model) Aşağıdaki ücret modeli Uygulama 9.3’den alınmıştır.(s.427) Modelde: Y:Haftalık Kazanç ($) ; X2: Tecrübe ; X3 : Eğitim Kategorisi lnY = 1.19 + 0.033 X2 + 0.074 X3

  14. Yarı-Logaritmik Fonksiyon Doğ - Log Model Y = b1 +b2 lnX+ u

  15. Yarı-Logaritmik Fonksiyon Doğ - Log Model Y = b1 +b2 lnX+ u

  16. Hedonik Model Doğ - Log Model Y = b1 +b2 lnX2+ b3 lnX3 + u Fiyat = -1.749.97 + 299.97 ln(m2) - 145.09 ln(YatakOda) (t) (-6.8) (7.5) (-1.7) Prob. [0.1148] Düz-R2= 0.826 sd=11

  17. Polinomial Fonksiyonlar Y = b1 + b2 X + b3 X2 + b4 X3 + ... + bk+1 Xk + u Kuadratik Model: Y = b1 + b2 X + b3 X2 + u = b2 + 2b3 X = 0  X0= -b2 / 2b3 Eğer b3<0 ise X0 noktası maksimumdur = 2b3 Eğer b3>0 ise X0 noktası minimumdur

  18. Polinomial Fonksiyonlar Kuadratik Model OM= Ortalama Maliyet ; Çıktı =Üretimİndeksi GMİ= Girdi Maliyetleri İndeksi OM = 10.52 - 0.175 Çıktı + 0.0009 (Çıktı)2 + 0.02 GMİ (t) (14.3) (-9.7) (7.8) (14.45) Düz-R2=0.978 sd=16

  19. Polinomial Fonksiyonlar Kübik Model TM= Toplam Maliyet ;Q =Üretim Miktarı

  20. Polinomial Fonksiyonlar Kübik Model Y = b1 + b2 X + b3 X2 + b4 X3 + u TM = 141.76 + 63.47 Q - 12.96 Q2 + 0.94 Q3 s(bi) (6.37) (4.78) (0.98) (0.059) R2 =0.998 sd=6

  21. Yeni Bağımsız Değişkenler Ekleme Testi (s.285-293) Y=b1 + b2 X2 + b3 X3 + u (SR) Y=b1 + b2 X2 + b3 X3 + b4 X4 + b5 X5 + u (SM) 1.Aşama H0: b4 = b5 = 0 H1: bi 0 Fa,f1,f2 =? 2.Aşama a = ? f1=? f2=? 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

  22. İki regresyon Parametresinin Eşitliğinin Testi (s.293-294) Y=b1 + b2 X2 + b3 X3 + b4 X4 + b5 X5 + u 1.Aşama H0: b4 = b5 H1: b4b5 ta,sd =? 2.Aşama a = ? 3.Aşama 4.Aşama |thes | > | ttab | H0 hipotezi reddedilebilir

  23. CHOW TESTLERİİki Örneğe ait Denklemlerin Eşitliğinin Testi(s.294-296) (Tüm Dönem) Y=b1 + b2 X2 + b3 X3 + u (1.Dönem) Y=b1 + b2 X2 + b3 X3 + u Y=b1 + b2 X2 + b3 X3 + u (2.Dönem) 1.Aşama H0: İki Denklem Birbirinin Aynıdır H1: İki Denklem BirbirindenFarklıdır Fa,f1,f2 =? a = ? f1=k f2=n1+n2-2k 2.Aşama 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

  24. CHOW TESTLERİYapısal Testlerde Yetersiz Gözlem Durumu(s.298-299) (Tüm Dönem) Y=b1 + b2 X2 + b3 X3 + u (1.Dönem; Yetersiz Gözlem) Y=b1 + b2 X2 + b3 X3 + u Y=b1 + b2 X2 + b3 X3 + u (2.Dönem) 1.Aşama H0: İki Denklem Birbirinin Aynıdır H1: İki Denklem BirbirindenFarklıdır Fa,f1,f2 =? a = ? f1=n1 f2=n2-k 2.Aşama 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

  25. Örnek Büyüklüğü Arttırıldığında Regresyon Katsayılarının Aynı Kalıp Kalmadığının Testi (İlk Dönem) Y=b1 + b2 X2 + b3 X3 + u (Genişletilmiş Dönem) Y=b1 + b2 X2 + b3 X3 + u 1.Aşama H0: bi=bi (Parametreler Değişmemiştir) H1: bibi (Parametreler Değişmiştir) 2.Aşama f2=n1-k Fa,f1,f2 =? a = ? f1=n2 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir

  26. Parametrelere Konan Sınırlamaların Testi Y=b1 + b2 X2 + b3 X3 + b4 X4 + b5 X5 + u (SM) Y=b1 + b2 X2 + b3 X3 + u (SR) H0: Sınırlamalar Gerçekleşmiştir 1.Aşama H1: Sınırlamalar Gerçekleşmemiştir Fa,f1,f2 =? 2.Aşama a = ? f1=c f2=n-k 3.Aşama 4.Aşama Fhes > Ftab H0 hipotezi reddedilebilir