1 / 21

Centrum Zaawansowanych Technologii POMORZE

Centrum Zaawansowanych Technologii POMORZE. Data założenia: 2000 r. 24 partnerów (uczelnie i przedsiębiorstwa) Koordynator: 2000-2009 prof. W. Sadowski, od 2010 proponowany prof. A. Zieliński (zwyczajowo jest nim prorektor Politechniki Gdańskiej).

zeroun
Download Presentation

Centrum Zaawansowanych Technologii POMORZE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Centrum Zaawansowanych Technologii POMORZE

  2. Data założenia: 2000 r. • 24 partnerów (uczelnie i przedsiębiorstwa) • Koordynator: 2000-2009 prof. W. Sadowski, od 2010 proponowany prof. A. Zieliński (zwyczajowo jest nim prorektor Politechniki Gdańskiej)

  3. Technologie wytwarzania bioaktywnych implantów tytanowych Wytwarzanie metodami metalurgii proszków i szybkiego prototypowania bioaktywnych implantów metalowo-ceramiczno-polimerowych o porowatej strukturze z biodegradowalnym rdzeniem, wysokiej bioaktywności i trwałości

  4. Technologie wytwarzania supertwardych warstw na materiałach do zastosowań specjalnych Wytwarzanie warstw o bardzo wysokiej twardości, odporności na korozję, biozgodności na narzędzia, implanty przy zastosowaniu metod multipleksowych (elektrochemicznych i próżniowych)

  5. Technologia CVD wytwarzania cienkich struktur węglowych Wytwarzanie cienkich struktur węglowych do utwardzania powierzchni układów optycznych, mechanicznych, mechatronicznych

  6. Monitoring składu warstw in-situ Raman Nieniszczące i nieinwazyjne pomiary parametrów warstw służące do optymalnego sterowania procesem CVD lub PVD.

  7. Zdalny przestrzenny monitoring plazmy OES System światłowodowej spektroskopii emisyjnej (OES) do nieinwazyjnej diagnostyki plazmy, monitorowania procesów PVD i CVD wspomaganych wyładowaniem jarzeniowym oraz przebiegu procesów spalania.

  8. Dwójłomne warstwy polimerów ciekłokrystalicznych Wytwarzanie powłok dwójłomnych z polimerów ciekłokrystalicznych na powierzchnie szklanych elementów optycznych.

  9. Technologie materiałów luminescencyjnych • Charakteryzacja materiałów luminescencyjnych metodami spektroskopii optycznej i spektroskopii wsokociśnieniowej. • Synteza spieków materiałów tlenkowych domieszkowanych jonami ziem rzadkich i metali przejściowych. • Modelowanie struktury energetycznej oraz procesów promienistych i bezpromienistych w jonach przejściowych w matrycach stałych Zastosowanie -luminofory (energooszczędne -lampy jarzeniowe i lampy LED) -ekrany rentgenowskie -pigmenty do farb fosforescencyjnych.

  10. Technologie materiałów luminescencyjnych • Charakteryzacja materiałów luminescencyjnych metodami spektroskopii optycznej i spektroskopii wsokociśnieniowej. • Synteza spieków materiałów tlenkowych domieszkowanych jonami ziem rzadkich i metali przejściowych.

  11. Technologia wytwarzania aerożeli tleno-azotkowych • Aerożele tleno-azotkowe charakteryzuje zwiększona wytrzymałość mechaniczna i termiczna w stosunku do aerożeli SiO2. Posiadają one podobną porowatość (> 90%) oraz powierzchnię właściwą (> 300 m2/g). • Zastosowanie technologii do wytwarzania materiałów termoizolacyjnych o zwiększonej wytrzymałości mechanicznej

  12. Materiały ceramiczne dla tlenkowych ogniw paliwowych katoda anoda • Technologie wytwarzania materiałów perowskitowych dla tlenkowych ogniw paliwowych: • nowe technologiewytwarzania planarnych ceramicznych ogniw paliwowych pracujących w średnich temperaturach (IT-SOFC) • poszukiwanie i wytwarzanie nowych, perowskitowych materiałówdo stosowania jako anody w IT–SOFC

  13. Ceramika nadprzewodnikowa do zastosowań energetycznych • Technologie otrzymywania ceramik nadprzewodników YBaCuO i BiSrCaCuO do wytwarzania: • elementów nadprzewodzących elektromagnesów • ograniczników prądowych • kabli nadprzewodzących • czujników [Nature 414(2001)368]

  14. Magnetyczne nieniszczące metody badań stanu elementów konstrukcji oraz spektroskopia mechaniczna • Oryginalne metody badania: • naprężeń własnych w skali makro stosując polowy efekt Barkhausena (HEB) oraz funkcji rozkładu naprężeń wewnętrznych (w skali mikro) stosując mechaniczny efekt Barkhausena Zasada badania za pomocą elektromagnesu jarzmowego: 1 – detektor EMA, 2 – detektor HEB, 3 – smar, 4 – jarzmo • stopnia degradacji materiałów eksploatowanych w warunkach zmiennych naprężeń i temperatur stosując emisję magnetoakustyczną (EMA) i prądy wirowe • nieciągłości - mierząc magnetyczne pole rozproszone oraz stosując impulsy magnetostrykcyjne • (w laboratorium) zmian mikrostruktury na poziomie atomowym i modułu sprężystości za pomocą spektroskopii mechanicznej (tarcie wewnętrzne)

  15. Wytwarzanie materiałów polimerowych • Technologie wytwarzania różnych odmian poliuretanów i ich mieszanin z innymi polimerami. • Technologie wytwarzania poliuretanowych materiałów kompozytowych i nanokompozytowych. • Technologie wytwarzania materiałów otrzymywanych z poliuretanów i recyklatów pozyskiwanych z odpadów tworzyw sztucznych i gumy. • Technologie wytwarzania poliuretanowych artykułów technicznych do eksploatacji w szczególnie trudnych warunkach i wyrobów powszechnego użycia, przydatnych do praktycznych zastosowań oraz krótkoseryjna ich produkcja.

  16. Syntetyczne receptory molekularne dla potrzeb diagnostyki i nanotechnologii Sensory i czujniki rozpoznawania do celów analityki

  17. Optyczne sensory chemiczne Wytwarzanie optycznych sensorów chemicznych do zastosowań w medycynie i ochronie środowiska, przykładowo do rozpoznawania jonów takich, jak Cu(II) i Pb(II) w obecności innych jonów w środowiskach wodnych. Chemosensor stanowi element rozpoznający osadzony na mezoporowatej ceramice. Budowa sensora zapobiega jego rozpuszczaniu się w roztworach. Użytą techniką pomiarowa jest luminescencja. W celu podwyższenia czułości jako dodatkow składniki stosowane są srebrne lub złote nanostruktury. Elementy rozpoznające (czujniki) mogą być stosowane trzykrotnie w cyklu chemisorpcja – desorpcja.

  18. Materiały luminescencyjne jako nowe źródła światła Nowe materiały luminescencyjne jako źródła światła zielonego lub czerwonego. Luminescencja wytwarzana jest przez pierwiastki ziem rzadkich, jak terb i europ, zaś wytwarzana energia wzmacniana jest dzięki zastosowaniu wzbudzonych nanocząsteczek półprzewodników (ZnS, ZnO, CdS, WO3, TiO2, SrTiO3) lub nanostruktur metali (Ag or Au). Materiały luminescencyjne składaja się z kesrożeli tlenkowych (przede wszystkim tlenek krzemu) jako matrycy i wspomnianych optycznie czynnych składników. W przeciwieństwie do stosowanych materiałów z lantanem, proponowane materiały są fotochemicznie stabilne i mogą być stosowane nawet w wyższych temperaturach.

  19. Dziękuję za uwagę

More Related