Cause and Effect

1 / 10

# Cause and Effect - PowerPoint PPT Presentation

Cause and Effect. Determining if a correlation exists is only the first step in a statistical analysis More important than if a relationship exists is why it exists. Cause and Effect Relationship. A change in one variable (independent) produces a change in another variable (dependent)

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## Cause and Effect

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
1. Cause and Effect

2. Determining if a correlation exists is only the first step in a statistical analysis • More important than if a relationship exists is why it exists

3. Cause and Effect Relationship • A change in one variable (independent) produces a change in another variable (dependent) Examples: • Lowering interest rates causes people to invest more money • Carbon dioxide in the atmosphere causes an increase in the global temperature

4. Cause and effect relationships are nice because if we want to change the dependent variable we know we can produce this by changing the independent variable • Sometimes there is a correlation between two variables but this is not a result of a cause and effect relationship.

5. Common Cause Factor • An external variable is causing the two variables to change in the same way Examples: • The number of cases of frostbite increases as the sales of winter tires increases

6. Reverse Cause and Effect Relationship • The independent and dependent variables are reversed Examples • Crime rates rise as the number of people in prison rise so someone argues that releasing all the criminals will decrease the crime rate • The mayor who orders his citizens to celebrate before the World Series so their team will win

7. Accidental Relationship • There is a correlation between two variables but it is just a coincidence Example • The unemployment rate is increasing at the same time that the Blue Jays go on a winning streak

8. Presumed relationship • The relationship does not seem to be accidental but it is difficult to show a cause and effect or common cause relationship Example • Heart attack rates drop as fitness clubs bring in more revenue

9. Extraneous Variables • External variables that that affect either the independent or dependent variable (or both) • These may make it difficult to determine if a causal relationship exists

10. Practice/Homework • Page 199 #1-5, 11