170 likes | 279 Views
D trapping in Multi-scale structure of carbon PFC. University of Provence and University Paul Cézanne N. BERNIER (d) , F. BOCQUET (a) , A. CHARAÏ (a) , W. SAIKALY (b) C. MARTIN (c) , M. RICHOU (c) , P. ROUBIN (c) , C. BROSSET (d) , B. PEGOURIE (d) (a) TECSEN, University Paul Cézanne
E N D
D trapping in Multi-scale structure of carbon PFC University of Provence and University Paul Cézanne N. BERNIER(d),F. BOCQUET(a), A. CHARAÏ(a), W. SAIKALY(b) C. MARTIN(c), M. RICHOU(c), P. ROUBIN(c), C. BROSSET(d), B. PEGOURIE(d) (a) TECSEN, University Paul Cézanne (b) CP2M, University Paul Cézanne (c) PIIM, University of Provence (d) Association Euratom-CEA, Cadarache
Coverage 2.0 Supermicropore (1.3 < d < 2 nm) 1.5 1.0 Ultramicropore (d < 1.3 nm) 0.5 TX (600°C) 4.0 N2 adsorption, isotherm 77 K TS (600°C) desorption 0.0 1E-7 1E-6 1E-5 1E-4 1E-3 0.01 0.1 1 3.0 Relative pressure 2.0 adsorption 1.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Relative pressure Multiscale porosity Volumetric adsorption CH4 adsorption, isotherm 77 K 1g C sphere math, r =5 mm, S=3.10-4 m2 mono-layer surface : deposit : 120 m2/g D/C =3 % CFC : 2 m2/g Coverage Porosity micro ~10 % meso ~ 4 % Mesopore 2 nm < d < 50 nm
Foil = 15 µm x 5 µm x 100 nm . Macropores Ovoid axis mesopore Parallel network slit-shaped pores Macropores (d > 50 nm) 45 ° from ovoid axis Granules spherical particles 20-50 nm homogeneous growth 10mm
granules macropore mesopores 45° 45° Deposits, no D dust : generation / clustering Tentative scheme of an ovoid Concentric shells ~ a few µm micropores d ~ 1 nm, 120 m2/g 10 % mesopores d ~ 10 nm 4 % macropores d ~ 100 nm Multiscale structure BUT no D trapping Growth of deposits, impact on dust ? Mesopores and macropores orientation / ovoid axis ~ 45° pore network ovoid symmetry ? Distance between mesopores ~ 50 nm clustering of granules of 20-50 nm
Langmuir Probe Sample Holder L. Begrambekov CFC Sample diagnostic d002=0.335 nm
1 mm D rich deposit : D/C ~ 0.4 NRA ~ 3.7 mm NRA flat top = D trapped in amorphous layer D tail-off in CFC where ? how ?
1 mm D in CFC amorphous d = 0.335 nm in CFC matrix no loss of sp2 / virgin CFC no D content Electron Energy Loss Spectroscopy loss of sp2 (sp2 p bond) amorphous C sp2 signature no D content, D free C
D in macroporosity of CFC-N11 b) Platinium migration on virgin CFC ~ 100 nm 100 nm 1 mm macropore : 100 nm largebetween matrix & fiber D tail in CFC = macropores relationship to D trapping & deposits ?
Summary DTsurface = 1000 K DTsurface = 50 K D trapped in layer D in CFC macropores D long term retention ? little D trapped in deposit micro-meso-macro pores dust inventory ?
FIB carving Pt Deposition Focused Ion Beam Final cut Relaxation of contraints Torsion Focussed Ion Beam carving for fast electron probing 5 µm Thickness ~ 100 nm
Couche amorphe Interface Matrice du CFC d002=3.35Ǻ Caractérisation de la structure du CFC-N11 Lame FIB du CFC irradié
3.7 mm Décroissance de D Plateau de D Caractérisation de la structure du CFC-N11 Profil de concentration en deuterium obtenu par NRA (technique par faisceau d’ions) Echantillon étudié V. Kh. Alimov
DOS Faisceau d’électrons Ecran du microscope 1s vers p* ou s* Ouverture d´entrée Lentilles d´ alignement 1s quadrupoles sextupoles Zone illuminée Secteur magnétique échantillon s p p* s* Fente de sélection en énergie Camera CCD 1s→s* Interactions inélastiques Bande de valence Energie Bande de conduction Spectre du graphite 1s→p* Description des techniques employées EELS Structure électronique
Caractère sp2↔ 285 eV Description des techniques employées Diamant: sp3 4 s Graphite: sp2 3 s et 1 p La comparaison du spectre d’un échantillon de carbone amorphe inconnu à celui du graphite permet de déterminer la fraction d’atomes de carbone hybridé sp2 dans l’échantillon
f) 1s→s* C-K 1s→p* Intensity (arb. units) 1 mm Energy-loss (eV) Caractérisation de la structure du CFC-N11 Spectres EELS fraction sp2 = 72% 4% fraction sp2 = 96 % 2% Une fois l’interface franchie, présence d’une structure graphitique identique à celle du CFC vierge
~ 3.7 mm 72 % 96 % 1 mm Caractérisation de la structure du CFC-N11 Présence du deutérium en profondeur dans le matériau, mais non lié dans la matrice du CFC
10 mm Caractérisation de la structure du CFC-N11 Avant irradiation plasma