1 / 15

Sullivan Algebra and Trigonometry: Section 5.1 Polynomial Functions

Sullivan Algebra and Trigonometry: Section 5.1 Polynomial Functions. Objectives Identify Polynomials and Their Degree Graph Polynomial Functions Using Transformations Identify the Zeros of a Polynomial and Their Multiplicity Analyze the Graph of a Polynomial Function.

miltonv
Download Presentation

Sullivan Algebra and Trigonometry: Section 5.1 Polynomial Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sullivan Algebra and Trigonometry: Section 5.1Polynomial Functions • Objectives • Identify Polynomials and Their Degree • Graph Polynomial Functions Using Transformations • Identify the Zeros of a Polynomial and Their Multiplicity • Analyze the Graph of a Polynomial Function

  2. A polynomial function is a function of the form where an , an-1 ,…, a1 , a0are real numbers and n is a nonnegative integer. The domain consists of all real numbers. The degree of the polynomial is the largest power of x that appears.

  3. Example: Determine which of the following are polynomials. For those that are, state the degree.

  4. (1,1) (0,0) (0,0) (1, -2) Graph the following function using transformations.

  5. (1, 4) (1,0) (2, 2) (2,-2)

  6. 2 f ( x ) = ( x + 1 )( x - 4 ) Consider the polynomial: 2 f ( x ) = ( x + 1 )( x - 4 ) = 0 Solve the equation f (x) = 0 x + 1 = 0 OR x - 4 = 0 x = - 1 OR x = 4 If f is a polynomial function and r is a real number for which f (r) = 0, then r is called a (real) zero of f, or root of f. If r is a (real) zero of f, then a.) (r,0) is an x-intercept of the graph of f. b.) (x - r) is a factor of f.

  7. If is a factor of a polynomial f and is not a factor of f, then r is called a zero of multiplicity m of f. Example: Find all real zeros of the following function and their multiplicity. x = 3 is a zero with multiplicity 2. x = - 7 is a zero with multiplicity 1. x = 1/2 is a zero with multiplicity 5.

  8. If r is a Zero of Odd Multiplicity Sign of f (x) changes from one side to the other side of r. Graph crosses x-axis at r. If r is a Zero of Even Multiplicity Sign of f (x) does not change from one side to the other side of r. Graph touches x-axis at r.

  9. Theorem: For large values of x, either positive or negative, the graph of the polynomial resembles the graph of the power function Theorem: If f is a polynomial function of degree n, then f has at most n - 1 turning points.

  10. 2 f ( x ) = x + 1 x - 5 x + 4 For the polynomial ( ) ( ) ( ) (a) Find the x- and y-intercepts of the graph of f. The x intercepts (zeros) are (-1, 0), (5,0), and (-4,0) To find the y - intercept, evaluate f(0) So, the y-intercept is (0,-20)

  11. 2 f ( x ) = x + 1 x - 5 x + 4 For the polynomial ( ) ( ) ( ) b.) Determine whether the graph crosses or touches the x-axis at each x-intercept. x = -4 is a zero of multiplicity 1 (crosses the x-axis) x = -1 is a zero of multiplicity 2 (touches the x-axis) x = 5 is a zero of multiplicity 1 (crosses the x-axis) c.) Find the power function that the graph of f resembles for large values of x.

  12. 2 f ( x ) = x + 1 x - 5 x + 4 For the polynomial ( ) ( ) ( ) On the interval d.) Determine the maximum number of turning points on the graph of f. At most 3 turning points. e.) Use the x-intercepts and test numbers to find the intervals on which the graph of f is above the x-axis and the intervals on which the graph is below the x-axis. Test number: x = -5 f (-5) = 160 Graph of f: Above x-axis Point on graph: (-5, 160)

  13. 2 f ( x ) = x + 1 x - 5 x + 4 For the polynomial ( ) ( ) ( ) On the interval On the interval Test number: x = -2 f (-2) = -14 Graph of f: Below x-axis Point on graph: (-2, -14) Test number: x = 0 f (0) = -20 Graph of f: Below x-axis Point on graph: (0, -20)

  14. 2 f ( x ) = x + 1 x - 5 x + 4 For the polynomial ( ) ( ) ( ) On the interval Test number: x = 6 f (6) = 490 Graph of f: Above x-axis Point on graph: (6, 490) f.) Put all the information together, and connect the points with a smooth, continuous curve to obtain the graph of f.

  15. (6, 490) (-1, 0) (-5, 160) (0, -20) (5, 0) (-4, 0) (-2, -14)

More Related