270 likes | 374 Views
This scientific course explores the use of algebraic topology in engineering and scientific applications, focusing on cohomology and circular coordinates for dimensionality reduction techniques in data analysis. Learn about finite simplicial complexes, ring theory, cochains, coboundary maps, and the concepts of cocycles and coboundaries.
E N D
MATH:7450 (22M:305) Topics in Topology: Scientific and Engineering Applications of Algebraic Topology Oct 23, 2013: Cohomology II Fall 2013 course offered through the University of Iowa Division of Continuing Education Isabel K. Darcy, Department of Mathematics Applied Mathematical and Computational Sciences, University of Iowa http://www.math.uiowa.edu/~idarcy/AppliedTopology.html
Dimensionality Reduction: • Given dataset D RN • Want: embedding f: D Rn where n << N • which “preserves” the structure of the data. • Many reduction methods: • f1: D R,f2: D R, …fn: D R • (f1, f2, … fn): D Rn U
Goal f1: D S1,f2: D S1, …fn: D S1 Note S1 is a ring: q1, q2 in S1 implies q1+ q2 and q1q2 are in S1
Cohomology and circular coordinates: Let X = finite simplicial complex. X0 = set of 0-simplices = vertices. X1 = set of 1-simplices = edges. X2 = set of 2-simplices = faces. . . . v2 e1 e2 v1 v3 e3
Cohomology and circular coordinates: Let X = finite simplicial complex, R a ring. C0(X, R) = set of 0-cochains = { f : X0 R } C1(X, R) = set of 1-cochains = { f : X1 R } C2(X, R) = set of 2-cochains = { f : X2 R } . . .
coboundarymaps d0:C0 = { f : X0 R } → C1 = { f : X1 R } f : X0 R →d0f : X1 R (d0f )(ab) = f (b)− f (a) d1:C1 = {α : X1 R } → C2= {α : X2 R } α : X1 R →d1α: X2 R (d1α)(abc) = α(bc)− α(ac)+α(ab)
Let α ∈ Ci , di : Ci= { f : Xi R } → Ci+1 = { f : Xi+1 R } α is a cocycle if diα = 0. I.e., α is in Ker(d1) α is a coboundary if there exists f in Ci-1 s.t. di-1f = α I.e., α is in Im(di-1) Note di di-1f = 0 for any f ∈ Ci-1. di di-1f = 0 implies Im (di-1) ⊆ Ker (di). Hi(X;A ) = Ker(di)/ Im(di-1).
C0(X, R) = set of 0-cochains = { f : X0 R } = { f | f(v1) = r1, f(v2) = r2, f(v3) = r3; (r1, r2, r3) in R3 } C1(X, R) = set of 1-cochains = {α : X1 R } = {α| α(e1) = r1, α(e2) = r2, α(e3) = r3; (r1, r2, r3) in R3 } Hi(X;A ) = Ker (di)/ Im (di-1). 0 C0 C1 0 v2 e1 e2 v1 v3 e3
C0(X, R) = set of 0-cochains = { f : X0 R } = { f | f(v1) = r1, f(v2) = r2, f(v3) = r3; (r1, r2, r3) in R3 } 0 C0 C1 H0(X;A ) = Ker (d0 )/ Im (d-1) = v2 e1 e2 v1 v3 e3
C0(X, R) = set of 0-cochains = { f : X0 R } = { f | f(v1) = r1, f(v2) = r2, f(v1) = r3; (r1, r2, r3) in R3 } 0 C0 C1 H0(X;A ) = Ker (d0 )/ Im (d-1) = Ker (d0 ) v2 e1 e2 v1 v3 e3
0 C0 C1 Ker (d0 ) = ? Suppose d0f = 0 d0f (v1v2) = f(v2) – f(v1) = 0 implies f(v1) = f(v2). d0f (v2v3) = f(v3) – f(v2) = 0 implies f(v2) = f(v3). d0f (v3v1) = f(v1) – f(v3) = 0 implies f(v3) = f(v1). v2 e1 e2 Thus f is the constant map v1 v3 e3
0 C0 C1 Ker (d0 ) = { f | f(vi) = r for all i} Suppose d0f = 0 d0f (v1v2) = f(v2) – f(v1) = 0 implies f(v1) = f(v2). d0f (v2v3) = f(v3) – f(v2) = 0 implies f(v2) = f(v3). d0f (v3v1) = f(v1) – f(v3) = 0 implies f(v3) = f(v1). v2 e1 e2 Thus f is the constant map v1 v3 e3
C0(X, R) = set of 0-cochains = { f : X0 R } = { f | f(v1) = r1, f(v2) = r2, f(v1) = r3; (r1, r2, r3) in R3 } 0 C0 C1 H0(X;A ) = Ker (d0 )/ Im (d-1) = Ker (d0) = { f | f(vi) = r for all i } v2 e1 e2 v1 v3 e3
C1(X, R) = set of 1-cochains = {α : X1 R } = {α | α (e1) = r1, α(e2) = r2, α(e3) = r3; (r1, r2, r3) in R3 } C0 C1 0 H1(X;R ) = Ker (d1)/ Im (d0 ) = v2 e1 e2 v1 v3 e3
C1(X, R) = set of 1-cochains = {α : X1 R } = {α | α (e1) = r1, α(e2) = r2, α(e1) = r3; (r1, r2, r3) in R3 } C0 C1 0 H1(X;R ) = Ker (d1)/ Im (d0 ) = C1/ Im (d0 ) v2 e1 e2 v1 v3 e3
C1(X, R) = set of 1-cochains = {α : X1 R } = {α | α (e1) = r1, α(e2) = r2, α(e1) = r3; (r1, r2, r3) in R3 } C0 C1 0 H1(X;R ) = Ker (d1)/ Im (d0 ) = C1/ Im (d0 ) Suppose f is in C0, then d0f in C1 is defined by: d0f (v1v2) = f(v2) – f(v1) d0f (v2v3) = f(v3) – f(v2) d0f (v3v1) = f(v1) – f(v3) v2 e1 e2 v1 v3 e3
C1(X, R) = set of 1-cochains = {α : X1 R } = {α | α (e1) = r1, α(e2) = r2, α(e1) = r3; (r1, r2, r3) in R3 } C0 C1 0 H1(X;R ) = Ker (d1)/ Im (d0 ) = C1/ Im (d0 ) Suppose f is in C0, then d0f in C1 is defined by: d0f (v1v2) = f(v2) – f(v1) d0f (v2v3) = f(v3) – f(v2) d0f (v3v1) = f(v1) – f(v3) Im(d0 ) = { f : X1R | f(e1) = r1, f(e2) = r2, f(e3) = -r1 - r2} v2 e1 e2 v1 v3 e3
C1(X, R) = set of 1-cochains = {α : X1 R } = {α | α (e1) = r1, α(e2) = r2, α(e1) = r3; (r1, r2, r3) in R3 } Im(d0 ) = { f : X1R | f(e1) = r1, f(e2) = r2, f(e3) = -r1 - r2} C0 C1 0 H1(X;R ) = Ker (d1)/ Im (d0 ) = C1/ Im (d0) = { f | f(e1) = r1, f(e2) = r2, f(e3) = r3}/ Im (d0 ) = { f | f(e1) = r1, f(e2) = r2, f(e3) = r3} { f : X1R | f(e1) = r1, f(e2) = r2, f(e3) = -r1 - r2}
Persistent Cohomology e1 < e2 < … < em X(e1) < X(e2) < … < X(em) Ci(X(ej), R)= { f : Xi(ej) R } … Ci(X(e1), R) Ci(X(e2, R)) … Ci(X(em, R)) Hi(X(e1), R) Hi(X(e2, R)) … Hi(X(em, R)) R R R
Proposition 1: Let α ∈ C1(X;Z) be a cocycle. Then there exists a continuous function θ : X → S1 which maps each vertex to 0, and each edge ab around the entire circle with winding number α(ab). v2 → e1 e2 v1 v3 e3
Proposition 1: Let α ∈ C1(X;Z) be a cocycle. Then there exists a continuous function θ : X → S1 which maps each vertex to 0, and each edge ab around the entire circle with winding number α(ab). →
Proposition 1: Let α ∈ C1(X;Z) be a cocycle. Then there exists a continuous function θ : X → S1 which maps each vertex to 0, and each edge ab around the entire circle with winding number α(ab). v2 → e1 e2 v1 v3 e3
Proposition 2: 2 Let α ∈ C1(X;R) be a cocycle. Suppose there existsα ∈ C1(X;Z) and f ∈ C0(X;R) such that α = α + d0f . Then there exists a continuous function θ : X → S1 which maps each edge ablinearly to an interval of length α(ab), measured with sign. v2 → e1 e2 v1 v3 e3