slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
9.1 INTRODUCTION Neurons: masses of nerve cells. PowerPoint Presentation
Download Presentation
9.1 INTRODUCTION Neurons: masses of nerve cells.

Loading in 2 Seconds...

play fullscreen
1 / 53

9.1 INTRODUCTION Neurons: masses of nerve cells. - PowerPoint PPT Presentation


  • 142 Views
  • Uploaded on

9.1 INTRODUCTION Neurons: masses of nerve cells. Structural and functional units of the nervous system. Specialized to react to physical and chemical changes in their surroundings. Nerve impulses: electrochemical changes neurons transmit. NEURONS Cell body: rounded area

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about '9.1 INTRODUCTION Neurons: masses of nerve cells.' - freya


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

9.1 INTRODUCTION

  • Neurons: masses of nerve cells.
  • Structural and functional units of the nervous system.
  • Specialized to react to physical and chemical changes in their surroundings.
  • Nerve impulses: electrochemical changes neurons transmit.
slide2

NEURONS

  • Cell body: rounded area
  • Extensions: dendrites and axons
  • Dendrites: receive electrochemical messages.
  • Axons: extensions that send information in the form of nerve impulses.
  • Neurons usually have only one axon.
slide4

NERVES

  • Bundles of axons.
  • Neuroglial cells: provide physical support, insulation, and nutrients for neurons.

ORGANS OF NERVOUS SYSTEM

  • Central nervous system: brain, spinal cord.
  • Peripheral nervous system: nerves that connect the central nervous system to other body parts.

3FUNCTIONS

  • Sensory
  • Integrative
  • motor
slide5

9.2 GENERAL FUNCTIONS OF THE NERVOUS SYSTEM

  • Sensory receptors: ends of peripheral neurons.
  • Gather information by detecting changes inside and outside the body.
  • Monitor external environmental factors, such as light and sound intensities, and conditions of the body’s internal environment, such as temp. and oxygen level.
slide6

Convert environmental information into nerve impulses.

  • Transmitted over peripheral nerves to the CNS.
  • Signals are integrated; brought together, creating sensations, adding to memory, or helping to produce thoughts that translate sensations into perceptions.
  • Integrativefunction: we make conscious or subconscious decisions.
  • Motorfunctions: to act on them.
slide7

Effectors: carry impulses from the CNS to responsive structures.

  • Outside the nervous system, include muscles that contract and glands that secrete when stimulated by nerve impulses.

MOTOR FUNCTIONS OF THE PERIPHERAL NERVOUS SYSTEM

2 categories

  • Somatic NS: consciously controlled, controls skeletal muscle.
  • Autonomic NS: controls effectors that are involuntary, hear, smooth muscle in blood vessels, and various glands.
slide8

9.3 NEUROGLIAL CELLS

  • Fill spaces between neurons, provide structural frameworks, produce the fatty lipoprotein myelin, and carry on phagocytosis.
  • Neuroglial cells greatly outnumber neurons.
slide9

NEUROGLIAL CELLS

  • Microglialcells: scattered throughout the CNS. They support neurons and phagocytize bacterial cells and cellular debris
  • Oligodendrocytes: align along nerve fibers. They provide insulating layers of myelin, called a myelin sheath around axons within the brain and spinal cord.
  • Astrocytes: commonly found between neurons and blood vessels, provide structural support, join parts by their abundant cellular processes, and help regulate the concentrations of nutrients and ions within the tissue. Also form scar tissue.
slide10

Ependymalcells: form an ephithelia-like membrane that covers specialized brain parts (choroid plexuses) and forms the inner linings that enclose spaces within the brain (ventricles) and spinal cord (central canal).

Schwanncells: neuroglial cells that form a myelin sheath around axons.

slide12

9.4 NEURONS

  • Neurofibrils: fine threads, extend into the axons (in the cell body).
  • Neuroncellbody: granular cytoplasm, cell membrane, organelles.
  • Chromatophilic substance: membranous sacs, similar to rough endoplasmic reticulum.
  • Axon: conducts nerve impulses away from the cell body.
  • Schwanncells: contain myelin, neurilemma sheath that surrounds the myelin sheath.
  • NodesofRanvier: gaps between Schwann cells
slide13

Axons with myelin sheaths are called myelinated.

  • Unmyelinated: lack sheaths.
  • Peripheral nerve Axons can regenerate
  • Schwann cells help do this.
  • CNS axons usually cannot regenerate themselves.
slide14

CLASSIFICATION OF NEURONS

  • Neurons differ in structure, size, and shape of their cell bodies.
  • Trigger zone: sensitive region of the axon, send a nerve impulse.
slide15

THREE MAJOR GROUPS OF NEURONS

  • Multipolar neurons: many processes arising from their cell bodies. Only one process of each neuron is an axon; the rest are dendrites.
  • Bipolar neurons: only two proceses, one an axon and the other a dendrite. Ex: eyes, nose, and ears
  • Unipolar neurons: single process, divides into two branches, single axon. One branch is associated w/ dendrites near a peripheral body part. The other branch enters the brain or spinal cord.
slide16

Ganglia: masses of nervous tissue.

  • Located outside the brain and spinal cord
  • Different functions of neurons:
  • Carry impulses into the brain or spinal cord
  • Transmit impulses out of the brain or spinal cord
  • Conduct impulses from neuron to neuron within the brain or spinal cord
slide17

GROUPS OF DIFFERENT NEURONS

  • Sensory neurons: (afferent neurons) carry nerve impulses from peripheral body parts into the brain or spinal cord. Either have specialized receptor ends at the tips of their dendrites, or they have dendrites that are closely associated with receptor cells in the skin or in sensory organs. (most unipolar, some bipolar)
slide18

Interneurons: (association or internuncial neurons) lie within the brain or spinal cord. Multipolar, link other neurons.

  • Motor neurons: (efferent neurons) are multipolar and carry nerve impulses out of the brain or spinal cord to effectors. Stimulate muscles to contract and glands to release secretions.
slide19

9.5 CELL MEMBRANE POTENTIAL

  • Polarized: surface of the cell membrane, electrically charged, unequal distribution of positive and negative ions
  • Actionpotential: change in charge of the membrane, forms a nerve impulse
slide20

DISTRIBUTION OF IONS

  • Active transport of sodium and potassium ions.
  • More sodium ions are outside and more potassium ions inside.
  • Cytoplasm: PO4-3, SO4-2, protein, K+
  • Potassium pass through cell membrane easier than sodium ions.
  • K+ a major contributor to membrane polarization.
slide21

RESTING POTENTIAL

  • Resting cell membrane is more permeable to K+ that to Na+, K+ diffuse out of the cell more rapidly.
  • Result, outside of cell gains a slight surplus of + charge.
  • Inside – charge
  • Potentialdifference: difference in electrical charge between two regions.
  • Restingpotential: potential difference between the region inside the membrane and the region outside the membrane.
slide22

As long as a nerve cell membrane is undisturbed, the membrane remains in this polarized state.

slide23

POTENTIAL CHANGES

  • Nerve cells are excitable, they can respond to changes in their surroundings.
  • Some detect changes in: temp, light, pressure
  • Many neurons respond to other neurons.
  • depolarizing: inside membrane becomes less negative compared to outside.
  • Change in potential is proportional to the intensity of stimulation.
  • Summation: change in potential is increases as more stimulation comes to cell
slide24

Threshold potential: action potential occurs

ACTION POTENTIAL

  • When threshold potential occurs: permeability changes at the trigger zone of the neuron being stimulated.
  • Channels highly selective for Na+ open and allow Na+ to diffuse freely inward.
  • Aided by the negative electrical condition on the inside of the membrane, which attracts the positively charged sodium ions.
slide25

As sodium ions diffuse inward, the membrane loses its negative electrical charge and becomes depolarized.

  • Membrane channels open that allow potasssium ions to pass through, inside of membrane becomes negatively charged once more.
  • Membrane returns to the resting potential.
slide26

Rapid sequence of depolarization and repolarization, 1/1000 of a second, called action potential.

  • http://www.youtube.com/watch?v=U0NpTdge3aw
slide27

9.6 NERVE IMPULSES

  • Wave of action potentials along a nerve axon –nerve impulse.
  • Pg. 213

IMPULSECONDUCTION

  • Unmyelinated axon: conducts an impulse over its entire surface.
  • Myelinated axon prevents almost all ion flow through the membrane it encloses.
  • Though, nodes of Ranvier between schwann cells have sodium and potassium channels, nerve impulse traveling along a myelinated axon appears to jump from node to node.
  • Many times faster than conduction on an unmyelinated axon.
slide28

Speed of nerve impulse conduction is proportional to the diameter of the axon.

  • 120m/s nuerons of skeletal muscle
  • 0.5m/s unmyelinated axon neuron in skin
slide30

EVENTS LEADING TO THE CONDUCTION OF A NERVE IMPULSE

  • Neuron membrane maintains resting potential
  • Threshold stimulus is received
  • Sodium channels in the trigger zone of the neuron open
  • Sodium ions diffuse inward, depolarizing the membrane
  • Potassium channels in the membrane open
  • Potassium ions diffuse outward, repolarizing the membrane
slide31

The resulting action potential causes a local bioelectric current that stimulates adjacent portions of the membrane.

  • A wave of action potentials travels the length of the axon as a nerve impulse.
slide32

ALL OR NONE RESPONSE

  • If a neuron responds at all, it responds completely.
  • A greater intensity of stimulation does not produce a stronger impulse, but rather, more impulses per second.
  • Refractory period: limits the frequency of impulses in a neuron, a threshold stimulus will not trigger another impulse on an axon.
  • Common 100 impulses/second, 700 could happen
homework
Homework

Pg. 246

Ques. 1-14

Quiz Friday on previous slides

slide34

http://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter14/animation__the_nerve_impulse.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter14/animation__the_nerve_impulse.html

slide35

9.7 THE SYNAPSE

  • Nerve pathways: pathway of nerve impulses.
  • Synapse: junction between any two communicating neurons
  • Gap, synaptic cleft
slide36

SYNAPTIC TRANSMISSION

  • Neuron carrying the impulse: presynaptic neuron
  • Neuron that receives this input, pstsynaptic neuron
  • Synaptic transmission: process of crossing the synaptic cleft with this message.
slide37

Neurotransmitters: biochemicals that aid the synaptic transmission

  • Distal end of axon have extensions called synaptic knobs.
  • In dendrites they contain synaptic vesicles
  • When a nerve impulse reaches a synaptic knob, some of the synaptic vesicles release neurotransmitters.
  • Neurotransmitters diffuses across the synaptic cleft and reacts with specific receptors ont eh postsynaptic neuron membrane.
slide38

EXCITATORY AND INHIBITORY ACTIONS

  • Neurotransmitters that increase postsynaptic membrane permeability to sodium ions will bring the postsynaptic membrane closer to threshold and may trigger nerve impulses.
  • Excitatory: these neurotransmitters
slide39

Inhibitory: neurotransmitters that make it less likely that threshold will be reached. Lessens the chance that a nerve impulse will occur.

  • If more excitatory than inhibitory neurotransmitters are released, the postsynaptic neuron’s threshold may be reached, and a nerve impulse will be triggered.
slide40

NEUROTRANSMITTERS

  • Fifty types of neurotransmitters have been identified in the nervous system.
  • Neurotransmitters: acetylcholine, monoamines (epinephrine, norepinephrine, dopamine, serotonin)
  • Amino acids (glycine, glutamic acid, aspartic acid, gamma-aminobutyric acid)
  • Neuropeptides (short chains of amino acids)
slide41

Acetylcholine and norepinephrine are excitatory

  • Dopamine, GABA and glycine are inhibitory
  • Neurotransmitters are made in the cytoplasm of the synaptic knobs, stored in the synaptic vesicles
slide42

When an action potential reaches the membrane of a synaptic knob, it increases the membrane’s permeability to calcium ions by opening the membrane’s calcium ion channels.

  • Calcium ions diffuse inward.
  • Some neurotransmitters are decomposed by enzymes in the synaptic cleft (acetylcholinesterase)
slide43

Decomposition or removal of neurotransmitters prevents continuous stimulation of postsynaptic neurons.

slide44

EVENTS LEADING TO THE RELEASE OF A NEUROTRANSMITTER

  • Action potential passes along an axon and over the surface of its synaptic knob
  • Synaptic knob membrane becomes more permeable to calcium ions, and they diffuse inward.
  • In the presence of calcium ions, synaptic vesicles fuse to synaptic knob membrane
  • Synaptic vesicles release their neurotransmitter into synaptic cleft
  • Synaptic vesicles reenter cytoplasm of axon and pick up more neurotransmitter
slide45

http://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter14/animation__the_nerve_impulse.htmlhttp://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter14/animation__the_nerve_impulse.html

slide46

9.8 IMPULSE PROCESSING

  • How nervous system process and respond to nerve impulses.

NEURONAL POOLS

  • How nuerons are organized.
  • Work together to perform a common function.
  • Recives input from neurons
  • May have exitatory or inhibitory effects on other pools
slide47

FACILITATION

  • May receive excitatory and inhibitory input.
  • If the net effect of the input is excitatory, threshold may be reached, and an outgoing impulse triggered.
  • Facilitation: if it was sub-threshold, the neuron is more excitable to incoming stimulation than before.
slide48

CONVERGENCE

  • Single neuron may receive impulses from two or more incoming axons.
  • Convergence: axons originating from different parts of the nervous system and leading to the same neuron.
  • Makes it possible for impulses arriving from different sources to have an additive effect on a neuron.
  • May reach threshold from two neurons from two different places.
  • Allows the nervous system to collect a variety of kinds of information, process it, and respond to it in a special way.
slide49

DIVERGENCE

  • Impulses leaving a neuron of a neuronal pool often pass into several other output neurons.
  • An impulse from one neuron might stimulate two others.
  • Then those two stimulate several others and so forth.
  • Can amplify an impulse, spread it to more neurons within a pool.
  • Neuron ---reaching many muscles
slide50

9.9 TYPES OF NERVES

  • Sensory fibers (Afferent)
  • Motor fibers (efferent)
  • Nerve: cordlike bundle of nerve fibers within layers of connective tissue.
  • Sensory nerves: conduct impulses to the brain or spinal cord.
  • Motor nerves: conduct impulses to muscles or glands.
  • Mixed nerves, nerves that include both
slide51

9.10 NERVE PATHWAYS

  • Routes nerve impulses follow.
  • Reflex arc: few neurons, structural and functional basis for involuntary actions.

REFLEX ARCS

  • Receptor at end of a sensory fiber
  • Interneurons within CNS
  • Reflex center