Download
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
Fig. 5-COa, p. 128 PowerPoint Presentation
Download Presentation
Fig. 5-COa, p. 128

Fig. 5-COa, p. 128

148 Views Download Presentation
Download Presentation

Fig. 5-COa, p. 128

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Fig. 5-COa, p. 128

  2. Fig. 5-COb, p. 129

  3. Age (Ma) cm Events 64.9 50 Post-extinction layer: Sediments containing microfossils from after the dinosaurs Tertiary 65.0 Fireball layer: Dust and ash fallout from the asteroid impact 60 Ejecta layer: Material blasted from the crater and deposited here within days to months 70 Cretaceous Fig. 5-COb, p. 129

  4. Fig. 5-1, p. 130

  5. Fig. 5-2, p. 130

  6. Fig. 5-3, p. 130

  7. Fig. 5-4, p. 131

  8. Depth 2 1.25 1.9 3 4 2.5 Scour moat 3.1 5 4 6 km miles West East Fig. 5-4, p. 131

  9. Table 5-1, p. 132

  10. Fig. 5-5, p. 132

  11. 1,000 Erosion 100 20 cm /sec 10 Stream velocity (cm/sec) Transportation 1 cm /sec Deposition 1 .1 Clay Silt Sand Gravel .004 .06 2.0 100 A Particle size (diameter in mm) Fig. 5-5, p. 132

  12. Table 5-2, p. 133

  13. Fig. 5-6, p. 133

  14. Erosion Transport Uplift Deposition Sedimentary beds Lithospheric plate Fig. 5-6, p. 133

  15. Fig. 5-7a, p. 134

  16. Fig. 5-7b, p. 134

  17. Fig. 5-7c, p. 134

  18. Fig. 5-8, p. 135

  19. Fig. 5-9, p. 136

  20. Fig. 5-10, p. 137

  21. Terrigenous deposits: Biogenous deposits: Hydrogenous deposits also present (manganese nodules) Calcareous oozes Continental margin sediments Siliceous radiolarian oozes Glacial-marine sediments Pelagic clays Siliceous diatom oozes Fig. 5-10, p. 137

  22. Table 5-3, p. 137

  23. Fig. 5-11, p. 138

  24. Fig. 5-12, p. 139

  25. Storm winds Sea level Wave base Substrate liquefied by wave activity Turbidity current Key Turbidity currents Submarine canyon Deep- sea fans Distance from shelf edge 100 50 150 km miles 0 50 100 Abyssal plain Continental rise Continental slope Sediment slump masses Graded beds of turbidites Continental shelf Underlying basaltic crust Fig. 5-12, p. 139

  26. Storm winds Sea level Wave base Substrate liquefied by wave activity Turbidity current Key Turbidity currents Submarine canyon Deep- sea fans Distance from shelf edge 100 50 150 km miles 0 50 100 Abyssal plain Continental rise Continental slope Sediment slump masses Graded beds of turbidites Continental shelf Underlying basaltic crust Stepped Art Fig. 5-12, p. 139

  27. Fig. 5-13a, p. 140

  28. Fig. 5-13b, p. 140

  29. Fig. 5-13c, p. 140

  30. Fig. 5-14, p. 141

  31. Fig. 5-15, p. 141

  32. CaCO3 accumulates above CCD Antarctic Arctic CaCO3 dissolves below CCD “Marine snow” CCD 4,500 meters Below CCD, water holds more CO2, which results in more carbonic acid, which dissolves CaCO3 faster. Fig. 5-15, p. 141

  33. Fig. 5-16a, p. 142

  34. Fig. 5-16b, p. 142

  35. Fig. 5-17a, p. 143

  36. Fig. 5-17b, p. 143

  37. Fig. 5-18a, p. 143

  38. Fig. 5-18b, p. 143

  39. Fig. 5-19, p. 144

  40. Fig. 5-20, p. 145

  41. Fig. 5-21a, p. 146

  42. Fig. 5-21b-d, p. 146

  43. Fig. 5-22a, p. 146

  44. Fig. 5-22b-e, p. 146

  45. Fig. 5-23a, p. 147

  46. Fig. 5-23b, p. 147

  47. Fig. 5-24, p. 147

  48. Fig. 5-25, p. 148

  49. Hydrophone Burst of air Sound reflects from the junctions between sub-bottom layers Bottom Fig. 5-25, p. 148

  50. Fig. 5-26, p. 149