slide1 l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
第 11 章 PowerPoint Presentation
Download Presentation
第 11 章

Loading in 2 Seconds...

play fullscreen
1 / 70

第 11 章 - PowerPoint PPT Presentation


  • 155 Views
  • Uploaded on

第 11 章. 統計方面的觀念與應用. Key Idea. 從專業領域收集來的原始數據,並不能偍供品質管制或改善所需的數據。數據必須要經過整理 、 分析,和解釋。統計學提供有效率和有效用的方式,從數據中取得有用的資訊,好讓主管與員工都能控制和改善流程。. 統計方面的觀念 . 統計學( Statistics ): 關於「收集、整理、分析、解釋,和呈現數據」的科學。 根據的原理: 1. 所有工作都發生在內部連結的流程系統中。 2. 所有流程都存在變異性。 3. 瞭解和降低變異性是致勝的關鍵。 . 製程的變異來源. 量測儀器 Measurement

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about '第 11 章' - donny


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

第 11 章

統計方面的觀念與應用

key idea
Key Idea

從專業領域收集來的原始數據,並不能偍供品質管制或改善所需的數據。數據必須要經過整理、分析,和解釋。統計學提供有效率和有效用的方式,從數據中取得有用的資訊,好讓主管與員工都能控制和改善流程。

slide3
統計方面的觀念
  • 統計學(Statistics):關於「收集、整理、分析、解釋,和呈現數據」的科學。
  • 根據的原理:
    • 1.所有工作都發生在內部連結的流程系統中。
    • 2.所有流程都存在變異性。
    • 3.瞭解和降低變異性是致勝的關鍵。
slide4
製程的變異來源

量測儀器

Measurement

Instruments

作業員Man

方法Methods

材料Materials

輸入

製程

輸出

工具Tools

人力檢查績效

Human

Inspection

Performance

機器

Machines

環境

Environment

slide5
瞭解變異之重要性

時間

可預測

?

不可預測

slide6
變異產生的作業問題
  • 變異提高了不可測性。
  • 變異減少了產能利用率。
  • 變異導致「長鞭」效應。
  • 變異使發現根本原因變困難。
  • 變異使及早檢測出潛在問題變困難。
variation
變異Variation
  • 很多無法控制的變異來源存在 (一般變異原因common causes)
  • 變異之特殊 (可指定assignable) 原因可以被確認而控制。
  • 無法瞭解這些差異會增加系統之變異。
key idea8
Key Idea

只由一般原因控制的系統稱為 穩定系統 (stable system).暸解穩定系統及特殊與一般變異原因間的差異,對於任何系統的管理都很重要。

slide9
兩種基本的管理錯誤
  • 把任何缺陷、抱怨、錯誤、中斷、意外、或短缺都視為特殊原因,但實際上是一般原因。
  • 把任何缺陷、抱怨、錯誤、中斷、意外、或短缺都視為一般原因,但實際上是特殊原因。
slide15
紅珠實驗的重要教訓
  • 系統中存在變異,如果穩定,是可以推測的。
  • 生產紅珠的所有變異及志願員工的逐日變異,全都來自過程本身。
  • 數字目標通常沒什麼意義。
  • 管理階層要為系統負責。
slide18
給指導者
  • 以下的投影片,可用於指導學生有關示範和討論戴明紅珠實驗,使用小袋的M & M ®的巧克力糖果 ,我在幾年前一個TQ新聞得到的建議。好的輸出( “紅色珠” )是藍色的M & M ,老師扮演戴明博士。
slide19

我們正在走入企業!!!

  • 我們有一個新的全球客戶,並開辦了工廠。所以,我需要5個成員的小組做工作:
      • 1 生產工人
      • 2 檢驗員
      • 1 首席檢驗員
      • 1 紀錄員
slide20
生產設定
  • 將袋子放在你的左手。
  • 在右角撕一個 3/4” 開口。
  • (每次僅能容許一個巧克力的大小)
slide21
生產程序
  • 生產工人生產10件,並將他們放在餐巾。
  • 每個檢驗員,獨立地,計算藍色的,並傳給主任檢查員核實
  • 如果主任檢查員同意,他/她告訴記錄員,並向我報告。
slide22

第一次就作對!

以妳的工作為榮!

作一個品質工作者!

slide23
總結經驗
  • 品質是高階主管做出來的。
  • 嚴格的程序是不夠的。
  • 人們並不總是變異的主要來源。
  • 數值目標往往毫無意義。
  • 檢驗非常昂貴,而且不儜改善品質。
slide24
關鍵概念複習
  • 隨機變量
  • 機率分配
  • 母體和樣本
  • 點估計
  • 抽樣分配
  • 平均值的標準誤差
slide25
隨機變數與機率分配
  • 指派數值給樣本空間每個可能結果的數學函數,稱為隨機變數;
  • 隨機變數可能是離散或連續的,要視假設的特定數值而定。
  • 機率分配,代表隨機變數相對頻率的理論模型;由於機率分配與隨機變數相關,故呈現一種離散或連續的分配類型。
slide26
重要的機率分配
  • 離散 Discrete
    • 二項 Binomial
    • 卜瓦松 Poisson
  • 連續 Continuous
    • 常態 Normal
    • 指數 Exponential
slide27
抽樣前應該先考慮的因素
  • 1. 研究目標為何?
  • 2. 應該用何種樣本?
  • 3. 可能從抽樣中產生什麼誤差?
  • 4. 研究成本如何?
slide28
抽樣方法
  • 簡單隨機抽樣Simple random sampling:母體中的所有項目都均等有被選中的機率。
  • 分層抽樣Stratified sampling:母體被分成組別,或階層,並從各階層中挑選一個樣本。
  • 系統化抽樣Systematic sampling:挑選每個第n項(第4、第5等)。
  • 群集抽樣Cluster sampling:挑選一個代表性的群體(例如公司部門),並從該群體內抽取隨機的樣本。
  • 判斷性抽樣Judgment sampling:用專家意見來決定某個可定義樣本群體的所在和特徵。
key idea29
Key Idea

好的抽樣計畫,應該以最低成本挑選樣本,其提供母體中最具代表性的樣本,並與已經研究所訂出的精密度與可靠度一致。

sampling error
Sampling Error
  • 抽樣誤差(統計誤差statistical error)
  • 非抽樣誤差(系統誤差systematic error)
  • 考慮的因素:
    • 樣本大小
    • 適當的抽樣設計
slide31
系統誤差的來源
  • 1. 偏差:系統化高或低估真值的趨勢。
  • 2. 無法比較的數據:把來自兩個母體的數據,誤認為來自同一個。
  • 3. 不嚴謹的趨勢投射:假設過去發生過的事,將會繼續到未來。
  • 4. 因果關係:假設兩個相關的變數,就必然互為因果關係。
  • 5. 不當的抽樣:用錯誤的數據收集法,因而結果有偏差 。
slide32
統計方法
  • 敘述性統計
  • 統計推論
  • 預測統計
excel
Excel中的統計工具
  • 工具 …數據分析 …敘述性統計
  • 工具 …數據分析 …直方圖
slide35
敘述統計
  • 母體-一整群感興趣對象的集合。
  • 樣本-從母體中抽取的部分對象。
  • 母體的特徵-平均值μ,標準偏差σ,或比例π,一般稱為母體參數。
  • 以統計符號中寫成如下:
slide36
敘述統計(續)
  • 在此,Xi為第i個觀測值,N為母體中的項數,Q是所呈現感興趣標準的項數,如製造缺點數或航班準時抵達數。
excel38
Excel的描述性統計工具
  • 工具 …數據分析 …敘述性統計
excel40
Excel的直方圖工具
  • 工具 …數據分析 …直方圖
sampling distrbutions
抽樣分配(Sampling Distrbutions)
  • 當用簡單隨機抽樣時,x的期望值就是母體平均值μ,或說
  • x的標準偏差可由以下公式求得 :
slide43
中央極限定理(CLT)
  • 若從任何有平均值μ和標準偏差σ的母體中簡單隨機抽取n個樣本,則當n變得很大時,樣本平均的機率分配趨近於有平均值μ和標準偏差(標準差) 的常態分配。以更精確的數學關係來說:當n→∞時,則隨機變數z= 的分配 就趨近於一個常態分配。
slide45
信賴區間(CI)
  • 一個母體參數的區間估計值,其訂出區間包含真正母體參數的可能性;此機率稱為信賴水準,以1-α來表示,且通常表達成百分比。
  • 如我們可能說「90% CI的平均值為10」;數值10是從樣本數據計算出的特徵估計值,2則可視為誤差極限。
hypothesis testing
假設檢定(Hypothesis Testing)
  • 假設檢定,是對兩個相反議案(假設)提出某個母體參數值的推論,而假設其中缺乏反駁數據者為真。
slide48
假設檢定的步驟
  • 1. 建構要檢定的假設。
  • 2. 選擇某個顯著水準,以定義對實際為真假設提出不正確結論的風險。
  • 3. 決定做為結論基礎的決策規則。
  • 4. 收集數據,並計算檢定統計值。
  • 5. 把決策規則應用在檢定統計值,並提出結論。
key idea49
Key Idea

人們用統計方法所犯的最大錯誤之一,就是把靜態母體中的抽樣數據(剖面數據cross-sectional data) ,跟動態製程中的抽樣數據 (時間數列數據 time series data)混淆了.

slide50
計數性 與 分析性研究
  • 計數性研究 Enumerative study –靜態母體的分析
  • 分析性研究 Analytic study –動態時間序列的分析
slide51
實驗設計
  • 實驗設計(Design of experiments ; DOE)要追溯到1920年代,是英國的R. A. Fisher發展出來的。
  • 經過設計的實驗,是讓實驗者能比較兩個或兩個以上方法,以決定何者較佳,或決定可控制因素水準的單一或系列測試。
  • 使製程的合格率最佳化,或使反應變數的變異性最低。
  • DOE 是六標準差很重要的工具。
design of experiments
Design of Experiments
  • 因子實驗 Factorial experiment
    • 考慮各因子的所有組合,以瞭解主要效果與交互作用。
slide54
品質工程發展史
  • 二次戰後,日本進行戰後復建時,面臨高品質原料、生產設備和有技術之工程師等嚴重短缺的問題。在此惡劣條件下,生產高品質產品與不斷改善品質便成為一項具有挑戰且急需解決的問題。
  • 1947年,日本為了解決通信品質低落的問題,成立電器通信實驗室(Electronic Communication Laboratory),初期規模與預算不如美國貝爾實驗室。在資源不足、缺少高品質機台下,只有靠著調整機台參數設定來提升交換機生產的品質。
slide55
品質工程發展史
  • 在1949年,田口玄一(Genichi Taguchi)博士於日本電信實驗室工作時,發現傳統實驗設計方法在實務上並不適用,逐漸發展了「品質工程」的基本原理。利用此方法,生產了高品質的交換機。
  • 田口所發展的是一透過實驗進行系統參數最佳化設計的方法,重視實際的應用性,而非以困難的統計為依歸,田口方法是用來改善品質的工程方法,在日本稱之為品質工程(quality engineering)。
  • 田口方法自發明至今,已受到全世界(工業界與學術界)的肯定與尊崇。
slide56
基本概念
  • 穩健設計(robust design)是透過工程最佳化的方式來進行品質改善的方法,所謂「穩健」是指所設計產品品質受到周圍環境影響的敏感度為最小。
  • 田口方法(Taguchi methods),就是一種穩健設計的實驗方法。
  • 品管活動可分為線上(on-line)品管與線外(off-line)品管兩類,田口對於線上和線外品管都有其獨特看法,但以後者最為有名因此品質工程就是指線外品管而言。
slide57
基本概念
  • 田口方法是要降低變異原因的影響,而不是去除變異的原因,來改善品質;田口方法將各種變異極小化,使得產品對變異的來源最不敏感。

Ex:m 代表電視機彩色密度目標值,而m ±5是可容忍的製程偏差。日本廠的產品品質特性呈一個近似常態分配,平均值在目標值上。美國廠的產品品質特性則呈一個近似在5 ± m 內之均勻分配。

slide58
基本概念
  • 日本廠產品大部分集中在目標值附近,亦即靠近m(變異較小,性能較佳)的產品,美國廠產品遠離m(變異較大,性能較差),超出產品規格機會較大。

LSL

USL

Target

slide59
產品/製程之參數
  • 對任一個產品或製程,我們可以繪出參數圖,如圖3 所示,其中y 表示所欲探討的品質特性或回應值(response)。影響y 的參數可以分為信號因子(M)、控制因子(Z)和雜音因子(X)三類。茲將此三類參數分述如下:
slide60
田口品質損失函數
  • 傳統觀點:只要在規格界限內即可OK, 無損失
  • 田口
    • 任何偏離目標值均代表可能損失
    • 偏離目標值愈大,其可能的損失愈大

SJSU Bus. 142 - David Bentley

slide61
對稱望目品質特性損失函數
  • 某汽車零件尺寸要求45±0.05mm,超出此規格,更換成本為200元,求k=? ,損失函數為何?
slide62
參數設計程序
  • 步驟1. 了解問題

(1) 定義系統目標/範圍:包含定義系統的目標、系統或子系統(subsystem)的範圍、選擇專案負責人及其成員、發展專案運作策略。

(2) 選擇回應值:此步驟主要是確認主要功能、副作用和失效型態,建立想要達成的結果,選擇回應值或理想機能(理想機能為信號因子與品質特性的理想關係式)及決定量測的方式。

  • 步驟2. 選擇因子和水準

(1) 發展信號因子和雜音策略:決定信號因子的範圍、重要的雜音因子及其水準、發展雜音策略。

(2) 辨認控制因子及其水準:辨認所有的控制因子、選擇重要的控制因子及其水準。

  • 步驟3. 選擇適用之直交表

選定適用之直交表並指派控制因子至直交表中。

slide63
參數設計程序
  • 步驟4. 準備及執行實驗,收集數據:準備/規劃實驗,並執行實驗,收集數據。
  • 步驟5. 根據品質特性計算直交表中每一次實驗的SN 比與y 。
  • 步驟6. 完成並解釋各因子對於SN比與y 的效果圖,執行二階段最佳化程序。
  • 步驟7. 決定控制因子的最佳水準組合,並預估其SN比和y 。
  • 步驟8. 執行確認實驗:田口建議要進行確認實驗,如果確認實驗結果與預估的結果不吻合(或不滿意),那麼表示實驗的過程失敗,必須重新規劃實驗。
  • 步驟9. 結論與建議:當確認實驗成功,將控制因子的最佳水準組合納入系統中執行。
slide64
計量值資料分析-無交互作用
  • 探討煮茶葉蛋的參數,影響茶葉蛋口感的因子有鹽量、茶葉、滷蛋時間,每個因子各設兩個水準,1~10分來評估茶葉蛋口感,分數越高口感越好(望大品質特性),每個因子水準組合各平分兩次。
slide66
計量值資料分析-無交互作用

求A因子水準1的SN平均值(以A1表示)

求A因子水準2的SN平均值(以A2表示)

A1=17.0392 A2=15.0664

slide67
計量值資料分析-無交互作用

求B因子水準1的SN平均值(以B1表示)

求B因子水準2的SN平均值(以B2表示)

B1=13.6248 B2=18.4808

slide68
計量值資料分析-無交互作用

求C因子水準1的SN平均值(以C1表示)

求C因子水準2的SN平均值(以C2表示)

C1=18.0767 C2=14.0289

slide69

A1

A2

B1

B2

C1

C2

計量值資料分析-無交互作用

選SN比最大的水準

最佳參數A1B2C1

鹽量選少量

滷蛋時間選2.5小時

茶葉種類選甲

B因子差異性最大,表示滷蛋時間對口感好壞影響最大

3水準的差異計算方式:最大的平均SN比值-最小平均SN比值