420 likes | 493 Views
Understand how to manage weights between layers in a neural network and make adjustments for accurate outputs and error reduction.
E N D
O1 I1 H1 I2 H2 O2
Layers of Weights • We Name Sets of Weights between layers As W1 for weights between input Layer and First Hidden Layer W2 for weights between next 2 layers and WN-1 for Weights between N-1th and Nth Layer(i.e. Output Layer) In our example Net we just have 3 layers Input Hidden and Output So we have just W1 and W2
W1 W2 O1 I1 H1 I2 H2 O2
Weights along Individual Links • Convention • Each Weight is named as follows • WNij • N refers to the Layer of Weights • So Between Input and First Hiden Layer i.e. W2ij is the Reference • Between Hidden and Output W2ij
Individual Weights within a layer • Reference WNij • WN refers to the Weight Layer • ij refers to the indices of the source and destination nodes. • So for example the weight between hidden node h1 and output node o2 • It belongs to weight layer 2 so W2 • i = 1 and j = 2 so Weight is W212
W1 W2 O1 I1 H1 W212 I2 H2 O2
W2 W1 W111 W211 O1 I1 H1 W121 W221 W212 W112 I2 H2 O2 W122 W222
W2 W1 1 -1 O1 I1 H1 0 0 0 -1 I2 H2 O2 1 -1
Inputs • 1 and 0 • Target outputs {1,1}
W2 W1 1 1 -1 O1 I1 H1 0 0 0 -1 0 I2 H2 O2 1 -1
Hidden Layer Computation • Xi =iW1 = • 1 * 1 + 0 * -1 = 1, • 1 * -1 + 0 * 1 = -1 = • { 1 - 1} = {Xi1,Xi2} = Xi
h = F(X) • h1 = F(Xi1) = F(1) • h2 = F(Xi2) = F(-1)
W2 W1 0.73 1 1 -1 O1 I1 H1 0 0 0 -1 0 I2 H2 O2 1 -1 0.27
Output Layer Computation • X = hW2 = • 0.73 * -1 + 0.27 * 0 = -0.73, • 0.73 * 0 + 0.27 * -1 = -0.27 = • { -0.73 - 0.27} = {X1,X2} = X
O = F(X) • O1 = F(X1) • O2 = F(X2)
W2 W1 0.73 1 1 -1 O1 I1 H1 0.325 0 0 0 -1 0 I2 H2 O2 1 -1 0.433 0.27
Error • D= Output(1 – Output)(Target – Output) • Target T1 = 1 , O1 = 0.325 = 0.33 • d1 = 0.33( 1 -0.33)(1 -0.33 ) = 0.33 (0.67)(0.67) = 0.148 • Target T2 = 1 , O2 = 0.433 = 0.43 • d2 = 0.43(1 - 0.43)(1-0.43) = 0.43(0.57)(0.57) = 0.14
Weight Adjustment • △W2t = αhd + Θ △W2t-1 • where α = 1 • Time t = 1 so no previous time
W2 W1 1 -0.891 O1 I1 H1 0 0.04 0.102 -1 I2 H2 O2 1 -0.962
Next • Calculate Change on W1 layer weights
What is this • Outputs are O1 and O2 • So k = {1,2} • So if i = 1
W2 W1 1 -0.891 O1 I1 H1 0 0.04 0.102 -1 I2 H2 O2 1 -0.962
This equals • e1 = (h1(1-h1)W11 D1 +W12D2 • e2 = (h2(1-h2)) W21 D1 +W22D2 • d1 = 0.15 d2 = = 0.14 e1 = (0.73(1-0.73))( -1* 0.15 +0*0.14) • e2 =( 0.27(1-0.27)) (0 *0.15 +-1*0.14) • e1 = (0.73(0.27)( -0.15)) • e2 =( 0.27(0.73)) (-0.14) • e1 = -0.03 • e2 = -0.028
Weight Adjustment • △W1t = αIe + Θ △W2t-1 • where α = 1
W2 W1 0.97 -1.109 O1 I1 H1 0 -0.04 -0.102 -1.028 I2 H2 O2 1 -1.038