slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Génération de courant dans les tokamaks PowerPoint Presentation
Download Presentation
Génération de courant dans les tokamaks

Loading in 2 Seconds...

play fullscreen
1 / 69

Génération de courant dans les tokamaks - PowerPoint PPT Presentation


  • 199 Views
  • Uploaded on

Génération de courant dans les tokamaks. Les enjeux Les courants dans un plasma de tokamak Description cinétique de la génération de courant Revue des différentes méthodes (théorie/expérience/technologie) Courant auto-généré (bootstrap) Courant inductif (Loi d’Ohm)

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

Génération de courant dans les tokamaks


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
    Presentation Transcript
    1. Génération de courant dans les tokamaks • Les enjeux • Les courants dans un plasma de tokamak • Description cinétique de la génération de courant • Revue des différentes méthodes (théorie/expérience/technologie) • Courant auto-généré (bootstrap) • Courant inductif (Loi d’Ohm) • Courant Radio-Fréquence (LH, EC) • Courant par injection de particules (IdN) • Fonctionnement non-inductif du tokamak • Vers le réacteur continu • Techniques de mesure

    2. - Les enjeux -

    3. Les courants dans les plasmas de tokamak jouent un rôle majeur pour • l’équilibre magnétique de la configuration • la stabilité MHD de la décharge • les performances fusion (critère de Lawson, ignition) • La maîtrise des courants dans les plasmas est donc au cœur de la physique de la fusion par confinement magnétique de type tokamak afin d’obtenir • un fonctionnement continu (évite les fatigues mécaniques structurelles) • un réacteur économiquement viable.

    4. Equilibre magnétique du tokamak • Confinement assuré par la combinaison de deux champs magnétiques : • champ axial produit par les bobines toroïdales Bt • champ poloïdal créé par le courant plasma Bq • Forme hélicoïdale des lignes de champ évite la dérive verticale des particules • Equilibre MHD: jxB = p • Rôle clé du courant plasma

    5. Stabilité du confinement

    6. Loi d’échelle du confinement des tokamaks Meilleures performances à fort courant plasma Ip Gigantisme des machines pour atteindre l’ignition TORE SUPRA JET ITER D.C. Robinson, Phys. Plasma. Contr. Fusion, 35 (1993) B91 Confinement standard de référence en absence de divertor: Mode L

    7. L’enjeu, c’est à tout instant de • contrôler le profil de courant à partir de paramètres externes • minimiser la fraction de puissance recyclée pour générer du courant: efficacité J (MA)/P (MW)

    8. Les difficultés sont multiples: • La complexité du milieu: topologie, homogénéité et isotropie • Problème cinétique: description statistique du mouvement des particules dans l’espace des vitesses et des configurations avec des aspects délicat (interaction ondes/particules à la résonance) • Description électromagnétique pour les ondes RF • La description relativiste des collisions dans un plasma chaud • La non-linéarité du problème: le lieu où du courant est généré dépend de l’équilibre et vice-versa • Modélisation est très coûteuse sur le plan numérique (3-D): développement d’algorithmes complexes • La mise en œuvre instrumentale (problèmes technologiques) • La détermination locale de la valeur du courant

    9. - Les courants dans un plasma de tokamak -

    10. Définition des référentiels : fonction de flux poloïdal magnétique

    11. Matrices de transformation entre les référentiels

    12. Equilibre magnétique: les surfaces de flux correspondent à des surfaces isobares et les lignes de champ sont également contenues dans ces surfaces. et Courant diamagnétique Divergence non-nulle de j Accumulation charges () Courant j//

    13. Densité de courant poloïdale (projection): et Equilibre magnétique: où f est la fonction de flux de courant. avec On en déduit: A noter: est le courant paramagnétique

    14. Pour calculer j//, il faut déterminer f’. Il faut pour cela introduire une équation supplémentaire donnant j//. On considère les équations du transport collisionnel dans un milieu fortement magnétisé déterminé par Braginskii. Pour chaque espèce j, on a trois équations pour les conservations du nombre de particules, de l’impulsion et de l’énergie: notation de Dirac où et

    15. Tenseur de stress (anisotropie de pression) Charge des particules Taux de transfert d’impulsion entre espèces Taux de transfert d’énergie entre espèces Flux de chaleur On considère le cas de deux espèces (électrons et ions), avec ne = ni = n, et dans la limite ete >> 1 et iti >> 1 où te et ti sont les temps caractéristiques de collisions, le taux de transfert d’impulsion des ions vers les électrons vaut Force de friction Force thermale

    16. (h: resistivité du plasma) En projetant dans la direction parallèle, on peut trouver naturellement l’équation pour j//. En reportant dans l’équation de conservation de l’impulsion, après avoir sommé sur toutes les espèces et tenu compte de l’électro-neutralité, de la stationnarité et de l’incompressibilité du plasma considéré comme un fluide

    17. , on a alors Puisqu’à l’équilibre, Correction d’ordre 1 et en combinant les équations: soit qui est la loi d’Ohm généralisée pour le courant circulant le long de la ligne de champ

    18. Dans la limite de forte collisionnalité, l’anisotropie de pression est négligeable, et Le champ électrique valant après changement de coordonnées: En l’absence de champ électrique induit par des bobinages externes (fonctionnement inductif), E =0, et on ne conserve que la composante poloïdale auto-cohérente Ep (liée à l’accumulation de charge poloïdalement)

    19. En régime stationnaire, (Stokes) Si l’on pose alors car // est constant sur une surface de flux: n() et T(). On en déduit ainsi et le courant de Pfirsch-Schlüter vaut:

    20. Le courant de Pfirsch-Schlüter existe toujours, puisqu’il provient de la condition d’écoulement des charges le long des lignes de champ: Il est cependant faible en général. Dans le cas d’une configuration tokamak circulaire avec grand rapport d’aspect (er/R0 << 1): Moyenne sur une surface de flux:

    21. A très faible collisionnalité, les effets d’anisotropie de pression peuvent devenir importants sur le courant j//. A partir du calcul de , on montre ainsi facilement que le terme associé vaut: Et pour le cas d’une configuration de section circulaire à grand rapport d’aspect,

    22. Du fait de l’équilibre magnétique, le courant j// vaut donc: Le premier terme est presque toujours négligeable. Le second n’intervient que si le tenseur de pression n’est pas isotrope, donc lorsque la collisionnalité du plasma est très faible (forte température, faible densité). Le courant j//b est le courant de bootstrap. Sa valeur sera explicitée à partir de la théorie cinétique. A noter, que seul le terme lié à l’anisotropie de pression j//b est susceptible d’assurer l’équilibre magnétique sous certaines conditions, sinon, il faut donc créer directement une source de courant par des moyens externes j//ext.

    23. Dans le cadre de la description fluide, ce rôle de source externe peut être joué par un champ électrique constant E induit par des conducteurs externes dans lesquels on fait circuler un courant (Loi de Lenz, bobines poloïdales), puisque formellement il s’agit du même mécanisme que pour le champ auto-cohérent Eps. Dans ce cas, on trouve par un calcul analogue que: et pour le cas d’une configuration de section circulaire à grand rapport d’aspect, le courant Ohmique ()

    24. Mais la description fluide est très limitée pour décrire la physique de la génération de courant dans les plasmas de tokamak car il est nécessaire de spécifier les caractéristiques dynamiques des particules en jeu : • électrons ou ions, circulants ou piégés • résonance onde-particules • la collisionnalité qui est fonction de l’énergie des particules • transfert d’impulsion (1D, 2D) • … Description cinétique

    25. - Description cinétique de la génération de courant -

    26. Equation de Klimontovitch Equation de Liouville (1/wpe,lDebye) BBGKY Equation de Vlasov Equation de Fokker-Planck Equation de Boltzman C(f,f’)=0 C(f,f’)≠0 C(f,f’)≠0 Champ moyen +Petites déflections +Fortes déflections Génération de courant

    27. est la vitesse et la relation de la dynamique avec la force de Lorentz f étant la fonction de distribution à une particule de type j

    28. Pour pouvoir exploiter cette équation, il est nécessaire d’effectuer des moyennes éliminant ainsi les variations rapides dont la valeur moyenne est nulle et qui ne portent pas de ce fait d’information intéressante aux échelles de temps ou d’espace auxquelles on se place pour étudier la génération de courant. Cette procédure permet de réduire le nombre de dimensions du problème. Il convient donc d’étudier les caractéristiques du mouvement des particules dans un plasma de tokamak Cette approche est essentielle pour pouvoir envisager une résolution numérique.

    29. Chauffages Diagnostics  >> lDebye W 0 (~ m, taille machine) Plasma = Ensemble de particules fortement couplées - Comportement collectif non-linéaire (problème à N corps) - Turbulence et transport anormal - Bifurcations et auto-organisation - Corps noir 1-100 kHz MHD FCI 10-100 MHz (~ dm) LH 1-10GHz (~ cm) (~ mm) FCE 10-100 GHz  ≈ lDebye Fréquence plasma 100-1000 GHz ECE mm) 1-430 THz IR nm)  << lDebye 430-750 THz Visible nm) Plasma = Ensemble de particules indépendantes - Comportement particulaire - Domaine du rayonnement - Corps gris, transparent 0.75-30 PHz UV nm) 1-10 keV X-mous ) IDN 10-1000 keV X-durs > 1 MeV g Plasmas de tokamak: wpe ~ wce 

    30. On ne considère que les processus physiques tels que l’équation puisse garder une forme conservative: où S est le flux de particules dans l’espace des phases. Ceci revient à faire l’hypothèse que la dynamique statistique étudiée peut être exprimée en termes diffusif (processus de Markov) ou convectif. Les processus « violents » sont exclus de ce modèle (effet d’avalanches, piégeage onde-particule à forte densité de puissance, transport de Lévy,…). Cette formulation joue un rôle fondamentale pour la résolution numérique du problème de la génération de courant

    31. Les quantités suivantes sont alors conservées: • la densité • la quantité de mouvement • l’énergie où Ec est l’énergie cinétique et V est n’importe quel volume de l’espace des phases défini par sa frontière A, le vecteur étant localement normal au plan tangent à la surface A.

    32. A partir de la connaissance de la fonction de distribution f, il est possible de remonter aux quantités macroscopiques intéressantes (moments de f) pour la physique de la génération de courant comme: • La densité de particules • Le densité de courant • La densité de puissance absorbée Une des difficultés majeures de l’approche numérique est de calculer rapidement la limite asymptotique qui est généralement celle recherchée:

    33. Plongées dans un champ magnétique B, les particules chargées ont un mouvement qui est caractérisé par une giration très rapide transverse à la direction de B de fréquence cyclotronique W, et un déplacement longitudinal libre (centre-guide). Cette approche reste valable même lorsque B varie lentement dans l’espace et dans le temps, les invariants du mouvement restant le moment magnétique et l’énergie (théorie adiabatique): Sans champ magnétique Avec champ magnétique

    34. Du fait de laconservation du moment magnétique mj et de l’énergie cinétique Ecj, il existe deux catégories de particules: celles qui sont circulantes et les piégées, ces dernières étant caractérisées par un point de rebroussement dans leur trajectoire le long de ligne de champ, lorsque p// change de signe: Critère de piégeage (cône): Section poloïdale circulaire et : avec Temps de rebond: Temps de transit:

    35. Z B R Bmin Le centre-guide a un lent mouvement de dérive verticale qui découle de la conservation de la composante toroidale que la quantité de mouvement canonique (axisymétrie): avec La vitesse de dérive cinétique vaut celle-ci résultant de la courbure des lignes de champ et B. le temps de dérive radial est donné par La vitesse du centre-guide vaut

    36. Largeur de “banane”

    37. Sur la base des caractéristiques de la dynamique des particules chargées dans le plasma magnétisé du tokamak, on peut réécrire l’équation cinétique donnant la distribution sous la forme qui correspond à l’équation de dérive cinétique soit Comme les ions sont bien plus lourds que les électrons, sauf exception, il est d’usage de les considérer comme immobiles pour le problème de la génération de courant (par ondes) et de ne s’intéresser qu’à la dynamique des électrons: f = fe.

    38. Dans les tokamaks, on a la hiérarchie suivante pour les temps caractéristiques de la dynamique des électrons: t Comme l’on veut étudier le courant porté par les électrons à l’échelle temporelle indiquée, il est possible d’effectuer plusieurs moyennes, pour simplifier l’équation cinétique donnant la distribution. A noter que si  >> rf dans la plupart des cas, ce n’est plus vrai lorsque l’on injecte une onde cyclotronique électronique. Il est donc préférable d’effectuer d’abord la moyenne sur les fluctuations périodiques de l’onde RF avant d’effectuer celle sur le mouvement cyclotronique.

    39. En posant et ainsi que et pour les champs fluctuants, on obtient Où est le flux quasi-linéaire induit par l’onde RF qui vaut:

    40. Dans l’équation en f, la dérivée temporelle n’est évidemment valable que pour des temps longs par rapport à 1/W et 1/wLe terme a été calculé pour tout type d’onde par Kennel et Engelman, pour un plasma infini et homogène (calcul complexe) A ce stade, la fonction de distribution est encore fonction de quatre variables: p//, p,, , ce qui constitue un problème numérique formidable à résoudre. Dans la limite de faible collisionnalité, il est cependant possible de « gagner » une dimension, en effectuant une moyenne sur la trajectoire des électrons (piégées ou circulantes). C’est le régime « banane » où les électrons sont en mesure de parcourir pleinement leur orbites (fermée dans un plan poloïdal) avant d’être défléchis par les collisions

    41. Z B R Bmin On définit ainsi la moyenne sur la trajectoire sous la forme: que l’on peut exprimer sous forme d’une intégrale sur l’angle poloïdal q en raison de l’axisymétrie. On résoud alors l’équation de dérive cinétique sur l’axe Bmin là où passent toutes les particules. Le problème est ainsi réduit à 3 dimensions:

    42. Champ électrique ondes Simplification supplémentaire: seule la solution asymptotique stationnaire est recherchée, avec collisions où  est leflux magnétique poloïdal • C(f): Opérateur Fokker-Planck  interactions particules-particules • Q(f): Opérateur quasilinéaire  interactions ondes-particules • E(f): Opérateur champ électrique constant

    43. Chaque terme correspond à un temps caractéristique propre

    44. e = 0.3, R = 3m, Te = 5.11 keV, ne = 310+19 m-3, q = 3, Vloop = 0.5V • tt ≈ 2s • tb ≈ 3.6s • tcoll ≈ 64s • tQL ≈ 64s (DQL*≈ 1) • tE ≈ 6.4 ms (E*≈ 0.01) • tD ≈ 28 ms Pour résoudre l’équation de dérive cinétique, compte tenu du fait que tD/tb >> 1, on peut effectuer une approche perturbative afin de tenir compte des gradients. En effet, à cause de la vitesse de dérive, et des largeurs finies de banane, le calcul n’est plus local.

    45. régime “banane” f0 est constante sur une ligne de champ • f0 est déterminée par Approche perturbative: on développe f sous la forme: f = f0 + df1oùd ~ tt,b/tD. • Ordre zéro: et comme Equation locale de Fokker-Planck moyennée sur les orbites

    46. régime “banane” • Ordre un: Sachant que avec en utilisant la relation de conservation de l’énergie et l’expresssion avec g constante sur une ligne de champ • la fonction g est déterminée par

    47. ~ • Par construction f est anti-symétrique en v// pour les électrons piégés. Comme tb << tcoll ,tQL ,tE, les opérateurs C,Q et E sont symétriques en v// pour les électrons piégés, d’où • f0 est symétrique en v// pour les électrons piégés (f0 constante sur la ligne de champ) • Il existe donc une solution gp, telle que gp = 0 dans le domaine piégé. En présence d’onde, la solution g = gp + cf0 est choisie pour assurer la conservation de la densité car

    48. Résolution équation de Fokker-Planck moyennée sur les orbites en trois points de la grille radiale pour déterminer f0 en r-r, r, r+r: • Détermination de à la limite vD = 0 • Détermination de la fonction g au point de grille r: ~ • Calcul de f = f0 + f + g au point de grille r • Calcul de oùGi,//est la contribution ionique (modèle Hirschman) Théorie néoclassique des électrons en présence d’onde Moyenne sur la surface de flux

    49. Une telle approche nécessite une description complète de la dynamique électronique dans l’espace des impulsions p// et p. • Un calcul en différentes positions radiales pour évaluer un gradient local autour d’une position r. Les modèles trop simplifiés ne peuvent pas prendre en compte toute la réalité physique de la génération de courant même s’ils peuvent saisir des éléments de celle-ci. L’avenir est donc a un traitement numérique efficace prenant en compte en plus la nature complexe de l’équilibre magnétique qui intervient sur les effets de trajectoires. Code de dérive cinétique 3D

    50. L’opérateur de collision décrit les échanges irréversibles entre particules. Il est donc indispensable à la production d’entropie. On s’intéresse à la génération de courant résultant de faibles perturbations autour de la solution Maxwellienne fM, en l’absence de toute contribution externe (champ électrique, ondes RF,….)  important pour les calculs numériques:on prend la symétrie de cet opérateur • Opérateur de collision de Belaiev-Budker couvrant de manière continue l’intervalle d’énergie classique/relativiste (divergence d’un flux dans l’espace des impulsions qui conserve la densité, l’impulsion et l’énergie) • On prend en compte les collisions électron-électron et électron-ion Dans le cas de l’opérateur linéarisé, on ne conserve plus l’énergie: formulation dédiée à la génération de courant uniquement