html5-img
1 / 17

Artificial Dissipation

Artificial Dissipation. The artificial dissipation term used in FEM is different than in FD,. Note: A is included to match terms in other equations. Artificial Dissipation (cont’d 2). Conservation of Mass:. Conservation of Momentum. Artificial Dissipation (cont’d 3).

jered
Download Presentation

Artificial Dissipation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Artificial Dissipation The artificial dissipation term used in FEM is different than in FD, Note: A is included to match terms in other equations

  2. Artificial Dissipation (cont’d 2) Conservation of Mass: Conservation of Momentum

  3. Artificial Dissipation (cont’d 3) Applying method of weighted residuals and integration by parts to the artificial dissipation term in the conservation of mass equation,

  4. New Local System Equations Conservation of mass

  5. New Local System Equations (cont’d 2) Conservation of momentum

  6. Boundary Conditions Implementation of boundary conditions will be done in the same way as for the FD equations.

  7. Boundary Conditions (cont’d 2)

  8. Boundary Conditions (cont’d 3)

  9. program hw6c integer nodes(131,2), lnode(2) real kglobal(258,6),klocal(4,4),x(131),svec(258), real area(131),coord(2),phi(2),dphi(2), real larea(2),x(3),w(3),lu(2),lrho(2),lmu(2),mulocal real fvec(258),flocal(4),uvec(131),rhovec(131) real kbound1(2,2),kbound2(2,2)cc initialize variablesc maxnode=131 maxmat=2*(maxnode-2) maxel=130 nlast=10000 dt=1.e-3 dx=0.1 temp=300. gamma=5./3. xi(1)=0.7745966692414830 xi(2)=0.0 xi(3)=-x(1) w(1)=0.5555555555555560 w(2)=0.8888888888888890 w(3)=w(1) Declare variables and Initialize certain variables

  10. do 10 i=1,maxnode c x(i)=(i-1)*dx c if(x(i).le.3.0)then c area(i)=4-2./3.*x(i) c else c area(i)=0.6*(x(i)-3.)+2. c endif c 10 continue c do 20 i=1,maxel c nodes(i,1)=i nodes(i,2)=i+1 c 20 continue Set up nodal coordinates, the area at each node, and the connectivity between local and global node numbers

  11. do 500 it=1,nlast c do 40 j=1,6 c do 30 i=1,maxmat c kglobal(i,j)=0.0 c 30 continue c 40 continue c do 200 ie=1,maxel c lnode(1)=nodes(ie,1) lnode(2)=nodes(ie,2) lrho(1)=rhovec(nodes(ie,1)) lrho(2)=rhovec(nodes(ie,2)) lu(1)=uvec(nodes(ie,1)) lu(2)=uvec(nodes(ie,2)) coord(1)=x(nodes(ie,1)) coord(2)=x(nodes(ie,2)) larea(1)=area(nodes(ie,1)) larea(2)=area(nodes(ie,2)) lmu(1)=0.125*lrho(1)*abs(lu(1))*dx lmu(2)=0.125*lrho(2)*abs(lu(2))*dx hlocal=coord(2)-coord(1) hlocalinv=1./hlocal Initialize sparse matrix. Loop through all the elements, one at a time. Set up local system variables at the two local nodes for the element of interest

  12. do 110 j=1,2 c do 100 i=1,2 c iloc=2*i-1 jloc=2*j-1 c do 60 jinit=1,4 c do 50 iinit=1,4 c klocal(iinit,jinit)=0.0 c 50 continue c 60 continue c do 80 nint=1,3 c xlocal=0.5*(xi(nint)*hlocal+(coord(2)+coord(1))) phi(1)=hlocalinv*(coord(2)-xlocal) phi(2)=hlocalinv*(xlocal-coord(1)) dphi(1)=-hlocalinv dphi(2)=hlocalinv alocal=larea(1)*phi(1)+larea(2)*phi(2) dalocal=larea(1)*dphi(1)+larea(2)*dphi(2) ulocal=lu(1)*phi(1)+lu(2)*phi(2) rholocal=lrho(1)*phi(1)+lrho(2)*phi(2) mulocal=lmu(1)*phi(1)+lmu(2)*phi(2) Loop through i,j, and also Set up indices of p,q. Zero out local matrix Apply 3 pt Gauss quadrature.

  13. c k_ij^(11) c term=2.*alocal/dt*phi(i)*phi(j)-ulocal* ! alocal*dphi(i)*phi(j)+0.5*mulocal*(alocal* ! dphi(i)+phi(i)*dalocal)*dphi(j) klocal(iloc,jloc)=klocal(iloc,jloc)+term* ! w(nint)*hlocal/2. c c k_ij^(12) c term=-rholocal*alocal*dphi(i)*phi(j) klocal(iloc,jloc+1)=klocal(iloc,jloc+1)+ ! term*w(nint)*hlocal/2. c c k_ij^(21) c term=alocal/dt*ulocal*phi(i)*phi(j)-0.5* ! ulocal**2*alocal*dphi(i)*phi(j)-temp/(2* ! gamma)*(alocal*dphi(i)+phi(i)* ! dalocal)*phi(j) klocal(iloc+1,jloc)=klocal(iloc+1,jloc)+ ! term*w(nint)*hlocal/2.

  14. c k_ij^(22) c term=alocal/dt*rholocal*phi(i)*phi(j)- ! rholocal*ulocal*alocal*dphi(i)*phi(j)+0.5* ! mulocal*(alocal*dphi(i)+phi(i)*dalocal)*dphi(j) klocal(iloc+1,jloc+1)=klocal(iloc+1,jloc+1)+ ! term*w(nint)*hlocal/2. c c f_i^(1) c term=2.*rholocal*ulocal*alocal*dphi(i)-mulocal* ! rholocal*(alocal*dphi(i)+phi(i)*dalocal) flocal(iloc)=flocal(iloc)+term*w(nint)*hlocal/2. c c f_i^(2) c term=rholocal*ulocal**2*alocal*dphi(i)+ ! (temp/gamma*rholocal-mulocal*ulocal)* ! (alocal*dphi(i)+phi(i)*dalocal) flocal(iloc+1)=flocal(iloc+1)+term* ! w(nint)*hlocal/2. c 80 continue c 100 continue c 110 continue

  15. idfree=(lnode(1)-2)*2 c if(ie.eq.1)then c do 130 jj=1,2 c do 120 ii=1,2 c kglobal(idfree+2+ii,jj+2)=kglobal(idfree+ii,jj+2) ! +klocal(ii+2,jj+2) kbound1(ii,jj)=klocal(ii+2,jj) c 120 continue c 130 continue c else if(ie.eq.maxel)then c do 150 jj=1,2 c do 140 ii=1,2 c kglobal(idfree+ii,2+jj+2)=kglobal(idfree+ii,2+jj+2)+ ! klocal(ii,jj+2) kbound2(ii,jj)=klocal(ii,jj+2) c 140 continue 150 continue

  16. else c do 180 jj=1,4 c do 170 ii=1,2 c kglobal(idfree+ii,2+jj)=kglobal(idfree+ii,2+jj)+klocal(ii,jj) kglobal(idfree+2+ii,jj)=kglobal(idfree+ii,2+jj)+klocal(ii+2,jj) c 170 continue c 180 continue c endif c 200 continue c c Boundary Conditions c c Solution of Matrix c If not in first or last element, transfer entire local matrix to global matrix. Boundary condition and matrix solution left for your project

  17. c resetting the values for the next iteration c do 250 i=1,maxnode-2 c i1=i*2-1 rhovec(i+1)=svec(i1)+rhovec(i+1) uvec(i+1)=svec(i1+1)+uvec(i+1) c 250 continue c uvec(1)=2.*uvec(2)-uvec(3) uvec(maxnode)=2.*uvec(maxnode-1)-uvec(maxnode-2) rhovec(1)= rhovec(maxnode)=2*rhovec(maxnod-1)-rhovec(maxnode-2) c 500 continue c stop end Note: index shift to account for reduction ff 1st and last set of rows of matrix equation Solution at first and last node is given, but may not be necessary.

More Related