1 / 57

Chapter 11 The Cardiovascular System Tests of Cardiovascular Functioning

Chapter 11 The Cardiovascular System Tests of Cardiovascular Functioning 1-The Electrocardiogram (ECG)

crwys
Download Presentation

Chapter 11 The Cardiovascular System Tests of Cardiovascular Functioning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 11 The Cardiovascular System Tests of Cardiovascular Functioning 1-The Electrocardiogram (ECG) • Is the measurement of the electrical currents of the heart. Contraction of the atria and ventricles results from action potentials occurring simultaneously in all muscle cells of the atria, followed by all muscle cells of the ventricles. • There are three currents produced in the normal ECG: -the P wave corresponds to atrial depolarization. -The QRS complex (beginning of Q wave to end of S wave) corresponds to depolarization of the ventricles. -The T wave corresponds to repolarization of the ventricles.

  2. 2-Measurement of Cardiac Enzymes When cardiac muscle cells die during a myocardial infarct (MI), they release their intracellular contents. Specific proteins and enzymes normally present only inside cardiac cells can be measured in the blood. Their plasma concentration allows one to accurately diagnose the existence, the extent and the timingof the infarct . • Enzymes released with cardiac cell death include : -myocardial creatinekinase (CK), - lactic acid dehydrogenase (LDH), and - serum glutamicoxaloacetictransaminase (SGOT).

  3. 3-Stress Testing the patient is asked to either walk on a treadmill or ride an exercise bike: -The pattern of the ECG is observed for alterations in rhythm, the presence of AV blocks, and evidence of ST-segment changes indicative of hypoxia. - Onset of physical symptoms, such as chest pain and extreme shortness of breath, is monitored.

  4. 4-Echocardiography • Echocardiography involves ultrasound waves directed at the chest wall that are analyzed by a computer as they bounce back from the chest. The computer generates an image that is used to calculate the size and movement of the heart chambers, the performance of the valves, and the flow of blood through the heart. This test is highly sensitive and non-invasive and provides a visual image of the beating heart.

  5. 5-Cardiac Catheterization (coronary angiogram) A flexible tube (catheter) is inserted through a peripheral vein (femoral or brachial) into the right side or through a peripheral artery (femoral or brachial) into the left side. The chambersof the heart can be visualized and chamber pressuresand oxygen content measured. A radiolabeled dye may be injected through it, so the heart chambers and vessels may be monitored using x-ray techniques. Valve movement can be observed. Because it is invasive, complications are possible, including tearing of the vessel wall. - After the procedure, patients must lie still for 4 to 6 hours until leg vessels seal.

  6. 6-Computed Tomography Scan Patients are given a radiolabeled dye to highlight the blood vessels, and then are exposed to a series of x-rays that create images of the heart in slices. 7-Magnetic Resonance Imaging Magnetic resonance imaging (MRI) utilizes a powerful magnet that sets the nuclei of atoms in the heart cells vibrating at specific, recognized frequencies. MRI:-is non-invasive and very sensitive, - but cannot be used on patients with pacemakers or metal implants such as stents.

  7. Pathopysiologic concepts 1-Thrombus It is a blood clot that can develop anywhere in the vascular system(unbroken blood vessel), so blood flow is reduced or totally blocked. A thrombus can develop : - from any injury to the vessel wall ,because endothelial cell injury draws platelets and clotting factors to the area. - when blood flow through a vessel is sluggish( venous side of the circulation)and when blood flow is irregular( irregular heartbeat or cardiac arrest).

  8. 2-Embolus An embolus is a substance that travels in the bloodstream from a primary site to a secondary site. Most emboli are : -blood clots (thromboemboli) usually from deep leg veins. -fat( released during the break of a long bone) -amniotic fluid, -air and -displaced tumor cells. Usually emboli are trapped in the first capillary network they encounter.

  9. 3-Aneurysm An aneurysm is a dilation of the arterial wall caused by a congenitalor commonly, from atherosclerosis or may develop as a result of an infection or trauma. Aneurysms may burst with increased pressure, leading to massive internal hemorrhage. 4- ValvularStenosis • Stenosis of any valve usually occurs as a result of a congenital defect or an inflammatory process (e.g., after rheumatic fever). • Extra work leads to hypertrophy (increase in size) of the heart, so increases its oxygen consumption and energy demands.

  10. 5-Valve Incompetence Any of the cardiac valves may be incompetent. Each chamber may hypertrophy. 6-Cardiac Shunts A shunt is a connection between the pulmonary and the systemic circulations. -After birth, any shunting is abnormal. - Blood will flow in the direction of least resistance. *Right-to-Left Shunt delivers poorly oxygenated blood to the systemic circulation. It is called a cyanotic shuntbecause it causes bluish tinge to the skin .It leads to: -Fatigue -increased respiratory rate . -Clubbingof fingers related to poor tissue perfusion.

  11. *Left-to-Right Shunt This shunt is acyanotic . Well-oxygenated blood is directed to the right side of the heart and recirculates to the left atrium and left ventricle. -A left-to-right shunt leads to hypertrophy of pulmonary vasculature and right heart failure may develop . -In addition, left heart failure may develop because of continual recycling of blood back into the left side of the heart from the lungs.

  12. Conditions of Disease or Injury 1-Atherosclerosis or hardening of the arteries, is characterized by accumulation of fatty deposits, platelets, neutrophils, monocytes and macrophages throughout the tunica intima (endothelial cell layer) and eventually into the tunica media (smooth muscle layer). It leads to a decrease in the diameter of the artery. The atherosclerotic area of an artery is called a plaque. Arteries most often affected include the coronaries, the aorta, and the cerebral arteries .

  13. Causes of Atherosclerosis :Four hypotheses are presented. - High Serum Cholesterol and circulating triglycerides. - High Blood Pressure. - Infection. - High Blood Iron Level. Clinical Manifestations - Intermittent claudication, an aching, cramping feeling in the lower extremities due to muscle ischemia. - Cold sensitivity due to inadequate blood flow to the extremities. - The area becomes pale. - Reduced arterial pulses. - Cell necrosis and gangrene may develop. Diagnostic Tools - Elevated cholesterol and triglyceride levels .Cholesterol levels higher than 180 mg/dL of blood are considered elevated. - Identifying or monitoring atherosclerosis may be done using coronary or carotid artery CT, ultrasound, or MRI.

  14. Complications - Hypertension - Stroke - MI - Development of an aneurysm. Treatment - Diet modification can lower LDL and improve HDL levels. High-fiber foods (fruits, vegetables, whole grains), fatty fish (omega 3 fatty acids), and garlic have been shown to lower LDL cholesterol. - Drugs are used to lower total cholesterol and triglyceride levels and improve HDL. Aspirin or anti-clotting drugs reduce risk of thrombus formation. - A well-planned exercise program may reduce LDL, increase HDL and lower body weight. Exercise may also stimulate development of collateral vessels around occluded sites. - Good control of plasma glucose level is essential in diabetic patients. - Cessation of smoking.

  15. 2-Hypertension Is high blood pressure measured on at least three different occasions from a person who has been at rest at least 5 minutes. Optimal pressures are considered less than 120 mmHg systolic and 80 mmHg diastolic, while pressures considered hypertensive are higher than 140 mmHg systolic, and higher than 90 mmHg diastolic. A state of prehypertension‌ is between 120 and 139 mmHg systolic and 80 and 89 mmHg diastolic. Causes of Hypertension - Increase in heart rate, stroke volume, and peripheral resistance - increase in plasma volume may occur as a result of renal mishandling of salt and water, or it may result from excess salt consumption. - increased sympathetic nervous system activity.

  16. Types of Hypertension - primary or essential hypertension :no known cause - Secondary Hypertension :clear cause is present as: a - renal vascular hypertension: renal artery stenosis, (congenital or a result of atherosclerosis)leads to reninrelease, and production of angiotensin II which increases blood pressure . If repair of the stenosis is possible or the affected kidney is removed, blood pressure returns to normal. b- pheochromocytoma, an epinephrine-secreting tumor of the adrenal gland causes increased heart rate and stroke volume. c - Cushing's disease, which causes increased stroke volume from salt retention. d - primary aldosteronism (increased aldosterone with no known cause). e- oral contraceptives .

  17. Clinical Manifestations Occur after years of hypertension, and include: - Waking headache, sometimes with nausea and vomiting. - Blurred vision caused by hypertensive damage to the retina. - Unsteadiness in the gait caused by central nervous system damage. - Nocturia caused by increased renal blood flow and glomerular filtration. - Dependent edema and swelling caused by increased capillary pressure. Diagnostic Tools Diagnostic measurement of blood pressure

  18. Complications - Stroke - A myocardial infarct (MI) - Renal failure - Encephalopathy (brain damage) Treatment - lowering heart rate, stroke volume, or peripheral resistance. - weight loss - exercise, especially coupled with weight loss. - stopping smoking - diuretics act by causing the kidney to increase its excretion of salt and water. - angiotensin II converting enzyme inhibitors (ACE inhibitors) .

  19. 3-Raynaud's Disease It is temporary spasm ( unknown cause) of the small arteries and arterioles, usually in the fingers or, less frequently, the toes. Spasm leads to tissue hypoxia, which is characterized by pallor (whiteness) or cyanosis (bluish tinge) of the digits, followed by rubor (redness) as the local mechanisms of vasodilatation take over. -It is usually seen in young women in response to cold exposure. Clinical Manifestations • Color changes of the digits with cold exposure. • Numbness of the digits, then tingling and pain as the episode ends. Diagnostic Tools • A good physical examination and history will assist diagnosis. Complications • - Gangrene may occur if episodes are extensive. Treatment • Avoid unnecessary exposure to the cold.

  20. 4-Varicose veins Veins are tortuous (twisted) distended veins occurring where blood has pooled, often in the legs. Causes: - long episodes of standing without muscle contraction - valve incompetence (weakness) - obesity - pregnancy. Clinical Manifestations Bulging, distended veins, showing prominent bluish streaks and pools in the legs. Diagnostic Tools Physical examination and family history will assist diagnosis.

  21. Complications - Blood clotting - Chronic venous insufficiency - Edema in the feet and ankles . Treatment - Weight reduction. - Elevation of the legs - Avoidance of tight-fitting clothes at the top of the legs or waist. - Elastic support hose for the lower legs to compress the veins. - Walking and exercise to increase muscle strength - Surgical stripping of the veins or cauterization may be performed.

  22. Angina Pectoris Is severe pain due to an inadequate oxygen supply to the myocardial cells. The pain may radiate down the left arm, to the back, to the jaw, or into the abdominal area. If the coronary arteries are narrowed with atherosclerosis and cannot dilate, ischemia occurs, and the myocardial cells begin to use anaerobic glycolysis and results in the production of lactic acid. Lactic acid decreases myocardial pH and causes the pain associated with angina pectoris. With rest , cells revert to oxidative phosphorylation for energy production. With removal of the lactic acid, the pain of angina goes away. Angina pectoris is therefore a short-lived experience.

  23. Types of Angina There are three types of angina: • - Stable angina, also called classic angina, occurs when atherosclerotic coronary arteries cannot dilate to increase flow when oxygen demand is increased. Increased work ,exposure to the cold, and mental stress may trigger classic angina. The pain of stable angina typically goes away when the individual stops the activity. • - Prinzmetal's(variant) angina occurs during rest or sleep. A coronary artery undergoes a spasm, causing cardiac ischemia to occur . • - Unstable angina is a combination of classic and variant angina, and is seen in an individual with worsening coronary artery disease.

  24. Clinical Manifestations • - Constricting or squeezing pain in the pericardial or substernal area of the chest, possibly radiating to the arms, jaw, or thorax. • - In stable and unstable angina, pain is typically relieved by rest. • - In Prinzmetal'sangina,pain is unrelieved by rest but usually disappears in about 5 minutes. Diagnostic Tools • - Alteration in the ST segment of the ECG may occur. • - Areas of reduced blood flow may be observed using radioactive imaging . • - Cardiac enzymes and proteins may be measured to rule out MI.

  25. Treatment • - Prevention: Aspirin , avoid stressors as working in the cold, stopping smoking. • - The atherosclerotic vessel is dilated by a catheter or inflated balloon. • - Bypass surgery, the diseased piece of a coronary artery is tied off, and an artery or vein ( saphenous vein and the internal mammary artery) is connected to nondamaged areas • - Placing artificial tubes, or stents, into the artery to keep it open • - Reducing energy demands: • - Nitroglycerin and other nitrates act as potent dilators of the venous system, decreasing venous return of blood to the heart. Dilation of a coronary artery also may occur with nitrates. • - Oxygen therapy eases demands on the heart.

  26. 6-Myocardial Infarction (MI) Is the death of myocardial cells that occurs following prolonged oxygen deprivation. Myocardial cells begin to die after about 20 minutes of oxygen deprivation. After this period, the ability of the cells to produce ATP aerobically is exhausted, and the cells fail to meet their energy demands. • With the death of muscle cells and changes in the heart's electrical patterns, the heart begins to pump in a less coordinated manner, causing contractility to decrease. Stroke volume falls, causing a fall in systemic blood pressure.

  27. Causes of Myocardial Infarct • - long-standing coronary artery disease (CAD). • - large thrombus that totally obstruct blood flow. • - hypertrophied chambers with relative oxygen deficiency Risk factors for developing CAD and/or MI include : a positive family history, hypertension, hypercholesterolemia, obesity, smoking, and diabetes.

  28. Clinical Manifestations Some individuals do not show any obvious signs of an MI (a silent heart attack), - Abrupt (usually) onset of pain, often radiates to the left arm, neck, or jaw. - Nitrates and rest might relieve ischemia without relieving the pain of infarct completely. - Nausea and vomiting, probably related to intense pain. - Feelings of weakness related to decreased blood flow to the skeletal muscles . - The skin becomes cool, clammy, and pale due to sympathetic vasoconstriction. - Urine output decreases related to decreased renal blood flow - Tachycardia develops, due to increased cardiac sympathetic stimulation and anxiety.

  29. Diagnostic Tools • - A family history of heart disease may be present. • - Blood pressure may be decreased or normal • - Heart rate is usually increased. • - The ECG may show acute changes with elevation in the ST segment and T wave inversion. Within 1 or 2 days of the infarct, deepening of the Q wave occurs. Although the ST and T wave changes will disappear over time, the Q wave changes remain and can be used to detect a past infarct. • - Systemic signs of inflammation occur, including fever, elevated number of leukocytes, and increased sedimentation rate. These signs begin about 24 hours after the infarct and continue for up to 2 weeks. • - Cardiac enzyme levels (creatininephosphokinase, serum glutamicoxaloacetictransaminase, and lactic dehydrogenase) in the serum increase as a result of myocardial cell death.

  30. Complications • -Thromboembolization • - Congestive heart failure . • - Cardiogenic shock (collapse of blood pressure). • - Myocardial rupture may occur after a large infarct. • - Pericarditis. Treatment • -Prevention of heart disease is vital. Moderate levels of exercise (including walking), cessation of smoking, and moderate limitation of dietary fat) • - For a patient with acute coronary syndrome, the following treatment guidelines, using the acronym ABCDE, have been proposed: • A for antiplatelet therapy, anticoagulation, • B for beta-blockade and blood pressure control • C for cholesterol treatment and cigarette smoking cessation • D for diabetes management and diet • E for exercise.

  31. 7-Heart Failure Heart failure occurs when the heart is unable to pump enough blood out to meet the oxygen and nutrient demands of the body. Causes of Heart Failure • - Noncardiac causes such as long-standing systemic or pulmonary hypertension , kidney failure or water intoxication. • - Cardiac causes include myocardial infarct, valvular defects, and congenital malformation. Clinical Manifestations Clinical manifestations of heart failure are often separated into forward and backward effects:

  32. Forward Effects of Left Heart Failure • - Decreased systemic blood pressure • - Fatigue • - Increased heart rate • - Decreased urine output Backward Effects of Left Heart Failure • - Increased pulmonary congestion, especially when lying down • - Dyspnea (difficult breathing) • - Right heart failure if the condition worsens Forward Effects of Right Heart Failure • - Decreased pulmonary blood flow • - Decreased blood oxygenation • - Fatigue • - Decreased systemic blood pressure • - all the signs of left heart failure

  33. Backward Effects of Right Heart Failure • - Increased venous pooling of blood, edema of the ankles and feet • - Jugular venous distension • - Hepatomegaly and splenomegaly Diagnostic Tools • - Radiological identification of pulmonary congestion and ventricular enlargement may indicate heart failure. • - MRI or ultrasound Treatment • -Beta blockers and angiotensin-converting enzyme (ACE) inhibitors as the most effective therapies for heart failure . • - Oxygen therapy may be used to reduce the demands of the heart. • - Nitrates may be administered . • - Digoxin (digitalis) may be administered to increase contractility.

  34. 8-Rheumatic fever Is a serious inflammatory disease that may occur in an individual 1 to 4 weeks following an untreated throat infection by the group A beta-hemolytic Streptococcus bacteria. -The acute condition is characterized by fever and inflammation of the joints, heart, nervous system, and skin. - In some cases, it can permanently affect the structure and function of the heart, especially the heart valves. - Rheumatic fever is preventable with prompt antibiotic therapy. - Rheumatic fever can occur at any age, but mainly affects children between the ages of 5 and 15.

  35. Rheumatic Heart Disease Approximately 10% of individuals who acquire rheumatic fever develop rheumatic heart disease. It is the major cause of acquired cardiac valve disease. Immune attack can occur against any of the four cardiac valves due to antigenic similarity between it and that bacteria, but is usually seen against the mitral and aortic valves. The course can be separated into acute and chronic: -In the acute stage, the valves become swollen and red and scar tissue develops. Scar tissue cause the leaflets to fuse together, narrowing the orifice. - A chronic stagemay follow, characterized by repeated inflammation and continued scarring.

  36. 9- Mitral Valve Stenosis Is a narrowing in the opening of the mitral valve , usually follow rheumatic fever or another cardiac infection. It may also result from a congenital defect in valve structure. Clinical Manifestations -May be absent or severe, depending on the level of stenosis. - Pulmonary congestion, with signs of dyspnea and pulmonary hypertension, may occur. - Dizziness and fatigue due to decreased left ventricular output may occur. .

  37. Diagnostic Tools -A low-pitched murmur may be present during ventricular filling (diastole) . - Echocardiography . Complications : Left atrial hypertrophy Treatment -Treatment for congestive heart failure may be required. - Valve replacement or surgical correction of the stenosis may be attempted

  38. 10-Aortic valve stenosis is a narrowing in the opening of the aortic valve. Like mitral valve stenosis, aortic stenosis usually follows rheumatic fever or is a congenital malformation. Clinical Manifestations Clinical manifestations may be absent or severe, depending on the level of stenosis. • - Pulmonary congestion, with signs of dyspnea and pulmonary hypertension. • - Dizziness and fatigue may occur due to decreased cardiac output

  39. Diagnostic Tools • - A systolic heart murmur may be heard as blood rushes through the narrow orifice. • - Echocardiography . Complications • Left ventricular hypertrophy may develop, leading to congestive heart failure. Treatment • - Treatment for congestive heart failure may be required. • - Valve replacement or surgical correction of the stenosis may be attempted.

  40. 11- Pulmonary Valve Stenosis Is a narrowing of the opening of the pulmonary valve. It most commonly occurs due to a congenital defect. Clinical Manifestations Clinical manifestations may be absent or severe depending on the level of stenosis. - Decreased pulmonary flow causes weakness and fatigue. - Venous distention and swelling of the ankles and feet .

  41. Diagnostic Tools - Echocardiography may be used to diagnose abnormal valve structure and motion. Complications - Right heart hypertrophy and subsequent right heart failure may occur. Treatment • - Treatment for heart failure may be required. • - Valve replacement or surgical correction of the stenosis may be attempted.

  42. 12-Mitral Valve Regurgitation • Usually caused by rheumatic fever .Blood backing into the pulmonary circulation causes pulmonary congestion and pulmonary hypertension. Clinical Manifestations Clinical manifestations may be absent or severe: - Pulmonary congestion, with signs of dyspnea and pulmonary hypertension. - Decreased cardiac output may cause dizziness and fatigue.

  43. Diagnostic Tools - A systolic heart murmur may be heard as blood is pushed through the orifice. - Echocardiography . Complications -Left ventricular and left atrial hypertrophy may develop, leading to congestive heart failure. Treatment - Treatment for congestive heart failure may be required. - Valve replacement or surgical correction of the incompetent valve may be attempted.

  44. 13-Aortic Valve Regurgitation Usually follows rheumatic fever. With blood flowing backward into the left ventricle during diastole, diastolic pressure in the aorta is reduced. A reduction in diastolic pressure in the aorta leads to a characteristic increase in the pulse pressure = the difference between the measured systolic and diastolic pressures. Aortic valve regurgitation leads to hypertrophy of the left ventricle, which can cause the development of congestive heart failure.

  45. Clinical Manifestations - A wide pulse pressure can be measured. - Hyperkinetic (very strongly bounding) peripheral and carotid pulsations are typically present. - Symptoms of heart failure may develop. Diagnostic Tools - A high-pitched diastolic heart murmur is frequently heard. - Echocardiography . Treatment - Treatment for congestive heart failure may be required. - Valve replacement or surgical correction of the incompetent valve may be attempted.

  46. 14-Congenital Heart Defects Congenital heart defects involve abnormal shunting between the left and right sides of the heart or between the aorta and pulmonary artery. Defects may involve the atria, the ventricles, any of the valves, or the great arteries.

  47. AtrialSeptal Defect(ASD) Is an abnormal opening between the left and right atria. It is a congenital disorder that occurs when the foramen ovale fails to close after birth, or when another opening between the left and right atria is present due to improper closure of the wall between the two atria during gestation.

  48. Ventricular Septal Defect(VSD) Is an abnormal opening between the left and right ventricles that occurs when the wall between the ventricles fails to close properly during gestation. VSD is the most common cardiac congenital defect. The size of the defect determines the severity of the symptoms.

  49. Patent DuctusArteriosus(PDA) Occurs when the ductusarteriosus, the connection between the pulmonary artery and the aorta, remains open after birth. Normally, the ductus closes soon after birth as a result of increased oxygenation in the pulmonary circulation. If the ductus does not close, blood will shunt between the two main arteries.

  50. Coarctationof the Aorta Coarctationof the aorta is a congenital defect that results in the narrowing of the aorta as it leaves the left ventricle. The narrowing can be proximal or distal to the ductusarteriosus. Tetralogyof Fallot Tetralogyof Fallot is a congenital heart defect characterized by four presenting abnormalities: -ventricular septal defect, -pulmonary artery stenosis, - right ventricular hypertrophy, and -a shifting of the position of the aorta so that it opens into the right ventricle (an overriding aorta). Tetralogy of Fallot is a cyanotic defect.

More Related