320 likes | 392 Views
Explore Fourier Transform theory, properties, computation methods in MATLAB, practical examples for signals, and application of Parseval's Identity. Experiment with Fourier Transform Pairs and explore time and frequency domain properties.
E N D
Signals and Systems (Lab) Resource Person : Hafiz Muhammad Ijaz COMSATS Institute of Information Technology Lahore Campus
EXPERIMENT # 8 Fourier Transform and its Properties.
In Previous Lab… • Introduction to Fourier Series • Complex Exponential Fourier Series Representation • Trigonometric Fourier series Representation • Properties of Fourier series • Linearity • Time Shifting • Time Reversal • Signal Multiplication • Parseval’s Identity
In this Lab… • Introduction to Fourier Transform • How to compute Fourier Transform and Inverse Fourier Transform using MATLAB? • Implementation of Fourier Transform Pairs • Properties of Fourier Transform • Linearity • Time Shifting • Frequency Shifting • Scaling in Time and Frequency • Time Reversal • Fourier Transform of the Even and Odd Part of a Signal • Convolution in Time and Frequency • Parseval’s Theorem
Introduction to Fourier Transform • The mathematical expression of Fourier transform is • The mathematical expression of Inverse Fourier transform is • The Fourier transform of a signal is called (frequency) spectrum.
Example: • Plot the Fourier transform of the continuous time signal • x(t) = cos(t)
Solution: syms t w x=cos(t) X=fourier (x,w) w1=[-4:0.05:4] X=subs(X,w,w1) for i=1:length(X) if X(i) == inf X(i) = 1 end end plot(w1,X) legend ('F[cos(t)]')
Example: • Plot the Fourier transform of the signal • x(t) = sin(πt) / (πt)
Example: Compute the Fourier transform of the function Solution: syms t w x=exp(-t^2); fourier(x) Xf=int(x*exp(-j*w*t),t,-inf,inf) xt=ifourier(Xf,t) • ans =pi^(1/2)/exp(w^2/4) • Xf =pi^(1/2)/exp(w^2/4) • xt= 1/exp(t^2)
Fourier Transform Pairs • Verify the Fourier transform pair • where is a rectangular pulse of duration, given by
Solution: syms t w T x=heaviside(t+T/2)-heaviside(t-T/2); xx=subs(x,T,4); subplot(2,1,1) ezplot(xx,[ -4 4]) legend('x(t)') x1=fourier(x,w) ww=[-10:.1:-.1 .1:.1:10]; X=subs(x1,w,ww) X=subs(X,T,4); subplot(2,1,2) plot(ww,X) xlabel('\Omega rad/s') legend('X(\Omega)')
Time and Frequency Shifting • Time shifting Property can be written as • Frequency shifting Property is given as
Solution syms t w x=cos(t); t0=2; xt0=cos(t-t0); Left=fourier(xt0,w) X=fourier(x,w); Right=exp(-j*w*t0)*X • syms t w • x=cos(t); • w0=2; • Le=exp(j*w0*t)*x; • Left=fourier(Le,w) • X=fourier(x,w); • Right=subs(X,w,w-w0)
Scaling in Time and Frequency • Scaling in Time domain is given as • Scaling in frequency can be written as
Solution syms t w b=3; x=heaviside(t+1)-heaviside(t-1); ezplot(x,[-2 2]); legend('x(t)')
FT of x(t)… X=fourier(x,w); ezplot(X,[-40 40]); legend('X(\Omega)') xlabel('\Omega')
Signal x(bt) , b=3 xb=subs(x,t,b*t); ezplot(xb, [-2 2]); legend('x(bt), b=3');
FT of x(bt) Xb=fourier(xb,w); ezplot(Xb, [-40 40]) legend('F(x(bt))') xlabel('\Omega')
X(bw)… Ri=subs(X,w,w/b); Right=(1/abs(b))*Ri; ezplot(Right,[-40 40]); legend('(1/|b|)*X(\Omega/b)') xlabel('\Omega')
Time Reversal Verify the time reversal property for the signal x(t)=t u(t)
Solution syms t w x=t*heaviside(t); X=fourier(x,w) ; Right=subs(X,w,-w) x_t=subs(x,t,-t); Left=fourier(x_t,w) Right = - 1/w^2 - pi*i*dirac(w, 1) Left = - 1/w^2 + pi*i*dirac(-w, 1)
Duality • Satisfy the Duality property for the signal mentioned below.
Solution syms t w x=exp(-t)*heaviside(t); X=fourier(x) Xt=subs(X,w,t) Left=fourier(Xt) x_w=subs(x,t,-w); Right=2*pi*x_w Left = 2*pi*heaviside(-w)*exp(w) Right = 2*pi*heaviside(-w)*exp(w)
Differentiation in Time and Frequency • For the signal x(t) • Differentiation in time domain is given as • Differentiation in Frequency domain can be written as
Solution syms t w x=exp(-3*t)*heaviside(t); der=diff(x,t); Left=fourier(der,w) X=fourier(x,w); Right=j*w*X Left=fourier(t*x,w) der=diff(X,w); Right=j*der Left =1 - 3/(i*w + 3) Right =(i*w)/(i*w + 3) Left =1/(i*w + 3)^2 Right =1/(i*w + 3)^2
Integration • For a given signal x(t) • Integration property can be written as • Satisfy the integration property for
Solution syms t r w x=exp(r)*heaviside(-r)+exp(-r)*heaviside(r); integ=int(x,r,-inf,t); Left=fourier(integ,w) X=fourier(x,w); X0=subs(X,w,0); Right=(1/(j*w))*X+pi*X0*dirac(w) • Left = 2*pi*dirac(w) + ((1/(- 1 + w*i) - 1/(1 + w*i))*i)/w • Right = 2*pi*dirac(w) + ((1/(- 1 + w*i) - 1/(1 + w*i))*i)/w
Solution syms t w x=exp(-t^2); Et=int((abs(x))^2,t,-inf,inf) ; eval(Et) X=fourier(x,w); Ew=(1/(2*pi))*int((abs(X))^2,w,-inf,inf); eval(Ew) ans =1.2533 ans =1.2533
Parseval’s Theorem • Parsvel’s Identity can be written as • Satisfy the Parsvel’s Identity using input signal