150 likes | 310 Views
Identifying Rare Variants with Bidirectional Effects on Quantitative Traits. Qunyuan Zhang, Ingrid Borecki, Michael Province Division of Statistical Genomics Washington University School of Medicine. Quantitative Trait & Bidirectional Effects. Distribution of Quantitative Trait.
E N D
Identifying Rare Variants with Bidirectional Effects on Quantitative Traits Qunyuan Zhang, Ingrid Borecki, Michael Province Division of Statistical Genomics Washington University School of Medicine
Quantitative Trait & Bidirectional Effects Distribution of Quantitative Trait Enriched with negative-effect (-) variants Enriched with non-causal (.) variants Enriched with positive-effect (+) variants
Apolipoprotein A-I (apoA-I) (An example of gene with bidirectional variants) High HDL Variants(-) with negative effects apo A-I Milano apo A-I Marburg apo A-I Giessen apo A-I Munster apo A-I Paris . High-density lipoprotein cholesterol (HDL) -560 A -> C -151 C ->T 181 A -> G Variants(+) with positive effects Low HDL
When there are only causal(+) variants … Collapsing (Li & Leal,2008) works well, power increased
When there are causal(+) and non-causal(.) variants … Collapsing stillworks, power reduced
When there are causal(+) non-causal(.) and causal (-) variants … Power of collapsing test significantly down
P-value Weighted Sum (pSum) Test Rescaled left-tail p-value [-1,1] is used as weight
P-value Weighted Sum (pSum) Test Power of collapsing test is retained even there are bidirectional variants
Q-Q Plots Under the Null Inflation of type I error Corrected by permutation test (permutation of phenotype)
Sum Test Collapsing test (Li & Leal, 2008) wi=1 and s=1 if s>1 Weighted-sum test (Madsen & Browning ,2009) wicalculated based-on allele freq. in control group aSum: Adaptive sum test (Han & Pan ,2010) wi= -1 if b<0 and p<0.1, otherwise wj=1 pSum: p-value weighted sum test wi = rescaled left tail p value incorporating both significance and directions
Simulation • Allele frequency: 0.002 • Variant numbers: n(+), n(-), n(.) • Additive effect: 0.5 or -0.5 SD • Total N: 2000 • Sample size: 300 • Three designs (below) random sampling two-tail sampling two-tail plus central sampling
n(+)=10, n(-)=0, n(.)=10 n(+)=10, n(-)=0, n(.)=20 Collapsing test (Li & Leal) pSum test aSum test (Han & Pan) n(+)=10, n(-)=10, n(.)=10 n(+)=10, n(-)=10, n(.)=10 n(+)=10, n(-)=10, n(.)=10 n(+)=10, n(-)=10, n(.)=10 n(+)=0, n(-)=10, n(.)=10 n(+)=0, n(-)=10, n(.)=10 n(+)=0, n(-)=10, n(.)=20
n(+)=10, n(-)=0, n(.)=10 n(+)=10, n(-)=0, n(.)=20 Collapsing test (Li & Leal) pSum aSum test (Han & Pan) n(+)=10, n(-)=10, n(.)=10 n(+)=10, n(-)=10, n(.)=10 n(+)=10, n(-)=10, n(.)=10 n(+)=10, n(-)=10, n(.)=10 n(+)=0, n(-)=10, n(.)=10 n(+)=0, n(-)=10, n(.)=10 n(+)=0, n(-)=10, n(.)=20
n(+)=10, n(-)=0, n(.)=10 Collapsing test (Li & Leal) pSum test aSum test (Han & Pan) Weighted-sum test (Madsen & Browning) n(+)=10, n(-)=10, n(.)=10 n(+)=0, n(-)=10, n(.)=10