chapter 6 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Chapter 6 PowerPoint Presentation
Download Presentation
Chapter 6

Loading in 2 Seconds...

play fullscreen
1 / 54

Chapter 6 - PowerPoint PPT Presentation


  • 773 Views
  • Uploaded on

Chapter 6. Chemical Reactions: Classification and Mass Relationships. Balancing Chemical Equations. Alphabet – elemental symbols Words – chemical formulas Sentences – chemical equations (chemical reactions) reactants  products limestone  quicklime + gas

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Chapter 6' - sharvani


Download Now An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
chapter 6

Chapter 6

Chemical Reactions: Classification and Mass Relationships

balancing chemical equations
Balancing Chemical Equations
  • Alphabet – elemental symbols
  • Words – chemical formulas
  • Sentences – chemical equations (chemical reactions)

reactants  products

limestone  quicklime + gas

Calcium carbonate  calcium oxide + carbon dioxide

CaCO3(s)  CaO(s) + CO2(g)

balancing chemical equations1
Balancing Chemical Equations
  • Chemical reactions include
    • Reactants
    • Products
    • Balanced – Law of Conservation of Mass
      • # of atoms of an element on the reactant side must equal the # of atoms of that element on the product side.
    • Indicate the state of matter of each chemical in the reaction (Chapter 4)
balancing chemical equations2
Balancing Chemical Equations
  • Write the equation without coefficients
  • List the elements in each equation
    • Secret: if the same polyatomic ion exists on both sides, keep it together
  • Determine the # of each kind of atom on both sides
  • Balance atoms one element at a time by adjusting coefficients
    • DO NOT ALTER THE FORMULA OF THE COMPOUND!!!!!
      • Only coefficients can be altered
    • Secret:
      • Balance atoms appearing only once on each side first.
      • Save compounds comprised of only one type of element till last.
  • Reduce to lowest terms if necessary
examples
Examples
  • Balance the following equations:
    • Al(s) + Fe2O3(s) → Al2O3 (s) + Fe (l)
    • Solid copper reacts with aqueous silver nitrate to form aqueous copper (II) nitrate and silver solid
    • H3PO4 (l) → H2O (l) + P4O10 (s)
    • C4H10(g) + O2 (g) → CO2(g) + H2O (g)
avogadro s number and the mole
Avogadro’s Number and the Mole
  • Meaning of a chemical reaction

2 C4H10(g) + 13 O2(g) → 8 CO2(g) + 10 H2O (g)

    • 2 molecules of C4H10(g) reacts with 13 molecules of O2(g)

to form

8 molecule of CO2(g) and 10 molecules of H2O(g)

avogadro s number and the mole1
Avogadro’s Number and the Mole
  • Molecule’s mass = the sum of the atomic masses of the atoms making up the molecule.
  • m(C2H4O2) = 2·mC + 4·mH + 2·mO
          • = 2·(12.01) + 4·(1.01) + 2·(16.00)
          • = 60.06 amu
avogadro s number of the mole
Avogadro’s Number of the Mole
  • One mole (mol) of any substance contains 6.02 x 1023 (Avogadro’s Number) units of that substance.
  • One mole (mol) of a substance is the gram mass value equal to the amu mass of the substance.
    • Calculated the same as amu’s for a molecule
avogadro s number and the mole2
Avogadro’s Number and the Mole
  • Calculate the molar mass of the following:
    • Fe2O3 (Rust)
    • C6H8O7 (Citric acid)
    • C16H18N2O4 (Penicillin G)
avogadro s number and the mole3
Avogadro’s Number and the Mole
  • Methionine, an amino acid used by organisms to make proteins, is represented below. Write the formula for methionine and calculate its molar mass. (red = O; gray = C; blue = N; yellow = S; ivory = H)
stoichiometry
Stoichiometry
  • 4 Conversion units
    • Chemical formula
    • Balanced chemical equation
      • Coefficients can read as;
        • # of molecules
        • # of moles of that molecules
      • Allows conversion between compounds in an equation
    • Avogadro’s # - 6.02 x 1023 of X = 1 mole of X
    • Molar mass – how many grams of a substance = 1 mole of that substance
avogadro s number and the mole4
Avogadro’s Number and the Mole
  • How many grams of oxygen are present in 5.961 x 1020 molecules of KClO3? How many atoms of oxygen are present?
avogadro s number and the mole5
Avogadro’s Number and the Mole
  • Calculate the number of oxygen atoms in 29.34 g of sodium sulfate, Na2SO4. 
    • A.  1.244 × 1023 O atoms
    • B.  4.976 × 1023 O atoms
    • C.  2.409 × 1024 O atoms
    • D.  2.915 × 1024 O atoms
    • E.  1.166 × 1025 O atoms
problem
Problem
  • Potassium dichromate, K2Cr2O7, is used in tanning leather, decorating porcelain and water proofing fabrics. Calculate the number of chromium atoms in 78.82 g of K2Cr2O7. 
    • A.  9.490 × 1025 Cr atoms
    • B.  2.248 × 1024 Cr atoms
    • C.  1.124 × 1024 Cr atoms
    • D.  3.227 × 1023 Cr atoms
    • E.  1.613 × 1023 Cr atoms
stoichiometry equation arithmetic
Stoichiometry: Equation Arithmetic
  • Balance the following, and determine how many moles of CO will react with 0.500 moles of Fe2O3.

Fe2O3(s) + CO(g) → Fe(s) + CO2(g)

stoichiometry chemical arithmetic1
Stoichiometry: Chemical Arithmetic
  • Aqueous sodium hydroxide and chlorine gas are combined to form aqueous sodium hypochlorite (household bleach), aqueous sodium chloride and liquid water.
    • How many grams of NaOH are needed to react with 25.0 g of Cl2?
problem1
Problem
  • Sulfur dioxide reacts with chlorine to produce thionyl chloride (used as a drying agent for inorganic halides) and dichlorine monoxide (used as a bleach for wood, pulp and textiles).SO2(g) + 2Cl2(g) → SOCl2(g) + Cl2O(g)If 0.400 mol of Cl2 reacts with excess SO2, how many moles of Cl2O are formed? 
    • A.  0.800 mol
    • B.  0.400 mol
    • C.  0.200 mol
    • D.  0.100 mol
    • E.  0.0500 mol
problem2
Problem
  • Nitrogen gas and hydrogen gas are combined to form ammonia (NH3), an important source of fixed nitrogen that can be metabolized by plants, using the Haber process.How many grams of nitrogen are needed to produce 325 grams of ammonia? 
    • A.  1070 g
    • B.  535 g
    • C.  267 g
    • D.  178 g
    • E.  108 g
percent yields
Percent Yields
  • Yields of Chemical Reactions:If the actual amount of product formed in a reaction is less than the theoretical amount, we can calculate apercentage yield.
problem3
Problem
  • What is the percent yield for the reactionPCl3(g) + Cl2(g) → PCl5(g)if 119.3 g of PCl5 ( MM = 208.2 g/mol) are formed when 61.3 g of Cl2 (  MM = 70.91 g/mol) react with excess PCl3? 
    • A.  195%
    • B.  85.0%
    • C.  66.3%
    • D.  51.4%
    • E.  43.7%
types of chemical reactions
Types of Chemical Reactions
  • Chemical Reactions discussed in College Chemistry can be broken down into 3 main categories
    • Precipitation reactions
    • Acid-Base reactions
    • Oxidation-Reduction (redox) reactions
types of chemical reactions1
Types of Chemical Reactions
  • Precipitation Reactions:A process in which an insoluble solid (precipitate) drops out of the solution.
    • Clear solutions of two ionic compounds when mixed form a cloudy solution (cloudiness indicates solid)
types of reactions
Types of Reactions
  • Acid–Base Neutralization:A process in which an acid reacts with a base to yield water plus an ionic compound called a salt.
    • The driving force of this reaction is the formation of the stable water molecule.
types of reaction
Types of Reaction
  • Metathesis Reactions (Double Displacement Reaction): These are reactions where two reactants just exchange parts.

AX + BY AY + BX

types of reactions1
Types of Reactions
  • Oxidation–Reduction (Redox) Reaction:A process in which one or more electrons are transferred between reaction partners.
    • The driving force of this reaction is the decrease in electrical potential.
precipitation reactions
Precipitation Reactions
  • Develop the reaction equation
  • Balance the reaction equation
  • Predict the state of matter of each species present
precipitation reactions and solubility rules
Precipitation Reactions and Solubility Rules
  • To predict whether a precipitation reaction will occur must be able to predict whether a compound is soluble or not
    • Solubility rules
solubility rules
Solubility Rules
  • Salts - soluble:
    • All alkali metal and ammonium ion salts
    • All salts of the NO3–, ClO3–, ClO4–, C2H3O2–,and HCO3–ions
solubility rules1
Solubility Rules
  • Salts which are soluble with exceptions:
    • Cl–, Br–, I– ion salts except with Ag+, Pb2+, & Hg22+
    • SO42– ion salts except with Ag+, Pb2+, Hg22+, Ca2+, Sr2+, & Ba2+
solubility rules2
Solubility Rules
  • Salts which are insoluble with exceptions:
    • O2– & OH– ion salts except with the alkali metal ions, and Ca2+, Sr2+, & Ba2+ ions
    • CO32–, PO43–, S2–, CrO42–, & SO32– ion salts except with the alkali metal ions and the ammonium ion
precipitation reactions and solubility rules1
Precipitation Reactions and Solubility Rules
  • Predict the solubility of:
    • (a) CdCO3(b) MgO (c) Na2S (d) PbSO4(e) (NH4)3PO4(f) HgCl2
precipitation reaction
Precipitation Reaction
  • Precipitation reactions only occur if a solid is produced as a product.
  • If all products are aqueous compounds then no reaction has taken place.
precipitation reactions and solubility guidelines
Precipitation Reactions and Solubility Guidelines
  • Predict whether a precipitate will form for:
    • (a) NiCl2(aq) + (NH4)2S(aq) 
    • (b) Na2CrO4(aq) + Pb(NO3)2(aq)
    • (c) AgClO4(aq) + CaBr2(aq)
problem4
Problem
  • Select the precipitate that forms when aqueous ammonium sulfide reacts with aqueous copper(II) nitrate. 
    • A.  CuS
    • B.  Cu2S
    • C.  NH4NO3
    • D.  NH4(NO3)2
    • E.  CuSO4
problem5
Problem
  • Select the precipitate that forms when the following reactants are mixed.Mg(CH3COO)2(aq) + LiOH(aq) → 
    • A.  LiCH3COO
    • B.  Li(CH3COO)2
    • C.  MgOH
    • D.  Mg(OH)2
    • E.  CH3OH
acids bases and neutralization reactions
Acids, Bases and Neutralization Reactions
  • Acid / Base Definitions
    • Arrhenius
      • Acid – donates a H+ (H3O+)
      • Base – donates an OH-
    • Bronsted-Lowry
      • Acid – donates a H+
      • Base – H+ acceptor
acids bases and neutralization reactions2
Acids, Bases and Neutralization Reactions
  • Neutralization Reaction:produces salt & water.
    • HA(aq) + MOH(aq)  H2O(l) + MA(aq)
  • Write a balanced chemical equation for the following:
    • (a) HBr(aq) + Ba(OH)2(aq)
    • (b) HCl(aq) + NH3(aq)
oxidation reduction reactions
Oxidation-Reduction Reactions
  • Redox reactions are those involving the oxidation and reduction of species (element or ion of an element).
  • Oxidation and reduction mustoccur together. They cannot exist alone.
  • Two important types
    • Single displacement reactions (activity series)
    • Combustions – reaction of a substance with O2
oxidation reduction reactions1
Oxidation Reduction Reactions

Oxidation

Is

Loss (of electrons)

AnodeOxidation

Reducing Agent

oxidation reduction reactions2
Oxidation Reduction Reactions

Reduction

Is

Gain (of electrons)

Cathode Reduction

Oxidizing Agent

redox reactions
Redox Reactions
  • Assigning Oxidation Numbers:All atoms have an “oxidation number” regardless of whether it carries an ionic charge.

1. An atom in its elemental state has an oxidation number of zero.

2. An atom in a monatomic ion has an oxidation number identical to its charge.

redox reactions1
Redox Reactions

3. An atom in a polyatomic ion or in a molecular compound usually has the same oxidation number it would have if it were a monatomic ion.

  • A. Hydrogen can be either +1 or –1.
  • B. Oxygen usually has an oxidation number of –2.
    • In peroxides, oxygen is –1.
  • C. Halogens usually have an oxidation number of –1.
    • When bonded to oxygen, chlorine, bromine, and iodine have positive oxidation numbers.
redox reactions2
Redox Reactions

4. The sum of the oxidation numbers must be zero for a neutral compound and must be equal to the net charge for a polyatomic ion.

  • A. H2SO4 2(+1) + (?) + 4(–2) = 0 net charge

? = 0 – 2(+1) – 4(–2) = +6

  • B. ClO4– (?) + 4(–2) = –1 net charge

? = –1 – 4(–2) = +7

problem6
Problem
  • Sodium tripolyphosphate is used in detergents to make them effective in hard water. Calculate the oxidation number of phosphorus in Na5P3O10. 
    • A.  +3
    • B.  +5
    • C.  +10
    • D.  +15
    • E.  none of these is the correct oxidation number
problem7
Problem
  • The oxidation numbers of P, S and Cl in H2PO2-, H2S and KClO4 are, respectively 
    • A.  -1, -1, +3
    • B.  +1, -2, +7
    • C.  +1, +2, +7
    • D.  -1, -2, +7
    • E.  -1, -2, +3
redox reactions3
Redox Reactions
  • Whenever one atom loses electrons (is oxidized), another atom must gain those electrons (be reduced).
    • A substance which loses electrons (oxidized) is called a reducing agent. Its oxidation number increases.
    • Asubstance which gains electrons (reduced) is called the oxidizing agent. Its oxidation number decreases.
redox reactions4
Redox Reactions
  • For each of the following, identify which species is the reducing agent and which is the oxidizing agent.
      • Ca(s) + 2 H+(aq)  Ca2+(aq) + H2(g)
      • 2 Fe2+(aq) + Cl2(aq) 2 Fe3+(aq) + 2 Cl–(aq)
      • SnO2(s) + 2 C(s)  Sn(s) + 2 CO(g)
      • Sn2+(aq) + 2 Fe3+(aq)  Sn4+(aq) + 2 Fe2+(aq)
problem8
Problem
  • Identify the oxidizing agent in the following redox reaction.Hg2+(aq) + Cu(s) → Cu2+(aq) + Hg(l) 
    • A.  Hg2+(aq)
    • B.  Cu(s)
    • C.  Cu2+(aq)
    • D.  Hg(l)
    • E.  Hg2+(aq) and Cu2+(aq)
problem9
Problem
  • Sodium thiosulfate, Na2S2O3, is used as a "fixer" in black and white photography. Identify the reducing agent in the reaction of thiosulfate with iodine.2S2O32-(aq) + I2(aq) → S4O62-(aq) + 2I-(aq) 
    • a.  I2(aq)
    • b.  I-(aq)
    • c.  S2O32-(aq)
    • d.  S4O62-(aq)
    • e.  S2O32-(aq) and I-(aq)
optional homework
Optional Homework
  • Text – 6.28, 6.29, 6.30, 6.33, 6.34, 6.38, 6.40, 6.42, 6.50, 6.54, 6.56, 6.60, 6.62, 6.66, 6.68, 6.72, 6.74, 6.76, 6.80, 6.82, 6.88, 6.90,6.92, 6.98, 6.100, 6.102, 6.106
  • Chapter 6 Homework - website
required homework
Required Homework
  • Assignment 6