1 / 12

11. Game Theory ( 不是電玩理論 ... )

11. Game Theory ( 不是電玩理論 ... ). 人生充滿著衝突與競爭。 。。 有太多的決策,不是自己說了算 ! 前面所有的分析,決策者都只有一個人,其他因素都是經驗累積而來的數據,或是統計後的或然率。當影響決策不是一個人時。。。.

rafael
Download Presentation

11. Game Theory ( 不是電玩理論 ... )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 11. Game Theory(不是電玩理論 ... ) 人生充滿著衝突與競爭。。。 有太多的決策,不是自己說了算! 前面所有的分析,決策者都只有一個人,其他因素都是經驗累積而來的數據,或是統計後的或然率。當影響決策不是一個人時。。。 所謂game(賽局),指用一群人所熟知競賽規則,來規範大家的行動及結果,還有每個人因自己決策而獲得的payoffs。每個參賽者,在規則下,透過方案選擇,爭取以最有效率的方式達到設定的目標。例如高爾夫球,用最少的桿數完成18洞的比賽。或像是撞球賽,誰先打完就贏。後者有鮮明的競爭性,達成目標的過程有衝突性,做球卡死對方。。。高爾夫球不會這樣!!! 通常競賽達成目標後,都會有某種payoffs(如獎金),本章討論game theory時,假設所有的payoffs,都可以轉成以金錢表示。 大家要注意,game theory不是在教大家怎麼玩(競爭)!! 而是關於玩的過程中,應如何選擇策略方案的方法與原則。所以game theory其實是一種有競爭狀況下的decision theory。

  2. a11 a12 ... a1n ... aij ... am1 am2 ... amn 11.1 Definition ofPayoff matrix (or table) • Payoff matrix (or table) • An m×n matrix is called a payoff matrix of a game if it satisfies, • There are only two players R and C. (such as 2 persons, 2 companies or 2 nations ...) • Player R has m choices, and player C has n choices. • If R chooses alternative Ri, and C chooses alternative Cj then aij denotes the payoff of C to R. Payoff matrix

  3. 2 -1 -1 -1 2 -1 -1 -1 2 Example 11.1 R與C兩人猜拳,剪刀/石頭/布。勝負之payoffs協議如下: (正值代表R獲利,負值時代表R損失。) 規則 1. 一樣,R賺2元。 2. 不同,R賠1元。 Payoff matrix

  4. 11.2 Zero sum game (零和遊戲) Two persons zero sum game means that the sum of total payoffs of players R and C is zero! On the other words, any one’s gain is the other’s lost. 想辦法讓自己降低損失,他有n種策略可供選擇。 Column player y=(y1, y2, ..., yn)是一個probability vector,yj代表C採用Cj策略的機率。所以 ∑j=1 to n(yj) = 1。 Row player 想辦法讓自己增加獲利,他有m種策略可供選擇。 x=(x1, x2, ..., xm)是一個probability vector,xi代表R採用Ri策略的機率。所以 ∑i=1 to m(xi) = 1。 R的立場

  5. II I 剪刀剪刀 石頭 布 III IV Example 11.1 -續 R與C兩人猜拳,剪刀/石頭/布。勝負之payoffs協議如下: (正值代表R獲利,負值時代表R損失。) R的probability vector 如果是(0.5, 0.25, 0.25),表示R有一半的機會出剪刀,另一半是出石頭或布。 轉輪盤是策略還是賭博?!

  6. Example 11.2 某社區原只有一家超商7-11,最近來了一家新超商全家。全家有三種廣告策略方案,用來吸引顧客。7-11因此也擬訂了三種反制的廣告策略,將顧客流失率降到最低。下表是根據過去兩家超商競爭經驗的分析後,所歸納出來的最低payoff table。 在競爭中,不要讓對方知道自己的策略,是很重要的關鍵。在不知道對方採取的競爭策略方案下,如何在零和遊戲中,選擇對自己最有利的策略? 全家: 必須使用maxmin rule,目的是maximizing the minimal payoff。所以選擇廣告3。 7-11: 必須採用minmax rule,目的是minimizing the maximal loss。所以選擇反制2。 Payoff指全家最少可以吸引到顧客幾千人。。。 零和遊戲的定義對這個範例很適用嗎? - 全家廣告後,其獲利真的就必然是7-11的損失嗎?

  7. 11.3 Saddle point (賽局的鞍點) Let G=(R, C, A) denote a two persons zero sum game if there is a value VG such that VG = MaxRMinC A(ri, cj) = MinCMaxR A(ri, cj) then VG is said the pure value of G and its location in A is said a saddle point. 3 3 MaxR{MinC A(ri, cj)} R player的最佳策略: r2 3 VG The pure value of G Saddle point MinC{MaxR A(ri, cj)} C player的最佳策略: c2 有鞍點的賽局稱為「strictly determined game」

  8. a b c d Example 11.3 將 payoff matrix A 完成,使其成為一 non-strictly determined game。 就是不能出現saddle point的意思! 分析如下: a12 Theorem 11.1 A 2×2 payoff matrix A= [ ] is a non-strictly determined game if and only if Max{b, c} < Min {a, d} or Max{a, d} < Min{b, c} a12

  9. MinC A(ri, cj) 0 6 1 0 2 3 5 3 5 7 1 -3 6 -4 -4 MaxR A(ri, cj) 6 3 6 7 11.4 Mixed strategy (混合策略) For a given G=(R, C, A) a two persons zero sum game, any strategy of x or y is said to be a pure strategy if its probability vector exists a component with value 1 (i.e., the others are all zero), otherwise it is a mixed strategy. MaxR{MinC A(ri, cj)} R player的最佳策略: r2 所以probability vector是 [0, 1, 0] 換句話說,有saddle points的game 其row或column player,所採取的策略,必然就是pure strategy。 A strictly determined game has pure strategy. A non-strictly determined game has mixed strategy. MinC{MaxR A(ri, cj)} C player的最佳策略: c2 所以probability vector是 [0, 1, 0, 0]

  10. 所以問題不在strictly determined game,而是在non-strictly determined game。因為混合策略時,才會有策略方案選擇的問題。到底哪個方案比較好?通常以優勝比值(oddment)來決定。 Example 11.3 R player 混合策略比值: [6/13, 7/13] 6 7 10 3 C player選擇c2策略後,R player會失去當C player選擇c1策略時,所能帶來的可能payoff之誤差。(這是C player選擇後唯一可以確知的事) C player 混合策略比值: [3/13, 10/13]

  11. Example 11.4: 2×3 Payoff matrix 如果不知道R所採取的混合策略是啥,C player 該怎麼進行策略選擇? c1: 17/8 c2: -13/8 c3: -13/8 R player [3/8, 5/8] 所以C的混合策略應該是[0, 9/10, 1/10]最為有利。 C player [9/10, 1/10] R player [9/14, 5/14] R player [12/22, 10/22] 堅決不採混合策略 採取pure strategy c2 Why? C player選c1時,R payoff的期望值為 -6×(12/22)+7×(10/22) = -2/22 選c2時,-1×(12/22)+(-2)×(10/22) = -32/22 選c3時,4×(12/22)+(-5)×(10/22) = -2/22 C player [9/22, 13/22] C player [1/14, 13/14] 看來R採取[12/22, 10/22]的混合策略很不利。因為C不論怎麼選都會贏。 如果R player的混合策略是[9/14, 5/14],那C player選c1時,R payoff的期望值為 -6×(9/14)+7×(5/14) = -19/14 選c2時,-1×(9/14)+(-2)×(5/14) = -19/14 選c3時,4×(9/14)+(-5)×(5/14) = 11/14 對C player不利,所以C的混合策略應該是[1/14, 13/14, 0]最為有利。

  12. Example 11.5: 3×3 Payoff matrix 求R oddment = [r1 odd:r2 odd:r3 odd],先降行… = [6:6:48] = [1:1:8] |10×1-(-2)×(-2)| = 6 ← r1 odd |6×1-(-2)×(-6)| = 6 ← r2 odd |6×(-2)-(-6)×(10)| = 48 ← r3 odd 不管怎樣R一定贏 求C oddment = [c1 odd:c2 odd:c3 odd],先降列… = [38:14:8] = [19:7:4] • If C takes pure strategy c1 then the expected payoff of R is (6×1+8×1+4×8)/10 = 23/5, and • the same expected payoff is come out in c2 and c3 cases. • 2. If R takes pure strategy r1, r2 or r3 then C has the same expected payoff (loss) 23/5 will be figured out. - = |2×(-5)-6×(-8)| = 38 ← c1 odd |-2×(-5)-6×4| = 14 ← c2 odd |-2×(-8)-2×4| = 8 ← c3 odd

More Related