visual observations of delta cephei time to update the finder chart n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Visual Observations of Delta Cephei: Time to Update the Finder Chart PowerPoint Presentation
Download Presentation
Visual Observations of Delta Cephei: Time to Update the Finder Chart

Loading in 2 Seconds...

play fullscreen
1 / 29

Visual Observations of Delta Cephei: Time to Update the Finder Chart - PowerPoint PPT Presentation


  • 118 Views
  • Uploaded on

Visual Observations of Delta Cephei: Time to Update the Finder Chart. David Turner Saint Mary’s University.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Visual Observations of Delta Cephei: Time to Update the Finder Chart' - oakes


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
visual observations of delta cephei time to update the finder chart

Visual Observations of Delta Cephei: Time to Update the Finder Chart

David Turner

Saint Mary’s University

slide2

d Cephei has a long history as a variable star, its variability being discovered by John Goodricke in October 1784. His friend Edward Piggot had discovered the variability of the Cepheid  Aquilae a month earlier in September 1784.

slide3

Polaris — the brightest of 40 classical Cepheids visible without optical aids.

 Cephei

 Aquilae

slide4

The ready accessibility of δ Cephei for amateur or student observations has been pointed out in the literature from time to time, e.g. van de Kamp, Sky & Telescope, 12, 208, 1953.

slide7

A more detailed comparison chart for δ Cephei from the AAVSO. Problem: ζ is clearly brighter than ι to the eye, and closer to β in brightness.

slide8

Specifically: 10 years of regular observation by two AAVSO observers (AAP, SSW) relative to the photoelectric light curve. Visual observations do not match the amplitude or extrema of δ Cep.

slide10

Alternate comparison chart for δ Cephei tied to photoelectric V-magnitudes from the Bright Star Catalogue. At faint limits the eye can distinguish differences of 0m.1 or better (Turner 2000).

slide12

Delta Cephei comparison chart

Cassiopeia

3.52

Cepheus

4.29

 Cephei

3.35

4.19

3.77

Lacerta

slide13

An accurate ephemeris for a Cepheid is essential for proper phasing of the observations. For δ Cephei:

HJDmax = 2442756.49 + 5d.36627 E

slide19

A combination of observations from 1999-2000 with every five data points averaged in phase. The results are comparable to photoelectric data.

slide22

David Turner

John Goodricke

A study of the evolutionary period decrease in δ Cephei from 230 years of observation.

slide23

The problem lies in the adopted reference magnitudes for the two main comparison stars: ζ Cep and ε Cep. van de Kamp (1953) lists values of 3.60 and 4.36 for the stars from Potsdam Durchmusterung photovisual pv magnitudes. Their photoelectric V magnitudes are 3.35 and 4.19, respectively, while AAVSO chart values are 3.6 and 4.2. Since all good eye estimates of δ Cephei are made under normal light conditions, the use of AAVSO charts artificially depresses the observed light amplitude and skews light maximum from its true brightness.

slide24

Star V BV SpT Vtrans Vchart

ζ Cep 3.35 1.57 K1.5 Ib 3.60 3.6

ε Cep 4.19 0.28 F0 IV 4.21 4.2

ι Cep 3.52 1.05 K0 III 3.68 3.5

α Cep 2.44 0.22 A7 V 2.45 2.4

υ Cep 4.29 0.52 A2 Ia 4.35 ...

α Lac 3.77 0.01 A1 V 3.74 ...

slide25

The study by Richard Stanton (JAAVSO, 10, 1, 1981) relating pe V magnitudes to visual magnitudes on AAVSO charts. He derived the relationship: mvis = V + 0.182 (BV)  0.15

slide26

Ron Zissel’s (1998) study of the visual magnitude system adopted the same formula… for observations with the dark-adapted eye.

slide27

The wavelength dependence of the photoelectric V filter relative to that for the dark-adapted eye.

slide28

But the eye’s spectral response for normal lighting conditions is much closer to the wavelength sensitivity of the Johnson V filter.

slide29

Since most observations of d Cephei are done in normal lighting conditions, use of a comparison chart with star magnitudes adjusted for dark adaption is inappropriate. Observations near the visual limit are also more accurate than those made of bright stars using telescopes, so the ideal observations of δ Cephei are made by eye or binoculars before the eye becomes dark adapted.