slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Tanana River School Districts- Converting Wood into Educational Dollars and Economic Development PowerPoint Presentation
Download Presentation
Tanana River School Districts- Converting Wood into Educational Dollars and Economic Development

Loading in 2 Seconds...

play fullscreen
1 / 25

Tanana River School Districts- Converting Wood into Educational Dollars and Economic Development - PowerPoint PPT Presentation


  • 101 Views
  • Uploaded on

Tanana River School Districts- Converting Wood into Educational Dollars and Economic Development July 29, 2013 Presenters: Daisy Huang, Research Engineer Alaska Center for Energy and Power University of Alaska Fairbanks Art Nash, Energy Specialist Cooperative Extension Service

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Tanana River School Districts- Converting Wood into Educational Dollars and Economic Development' - morgan


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

Tanana River School Districts- Converting Wood into Educational Dollars and Economic Development

July 29, 2013

Presenters:

Daisy Huang, Research Engineer

Alaska Center for Energy and Power

University of Alaska Fairbanks

Art Nash, Energy Specialist

Cooperative Extension Service

University of Alaska Fairbanks

slide2

Outline

  • Why woody biomass?
    • Alaskan context
    • Why biomass is a solution
  • Three examples of woody biomass usage in Interior Alaska
    • Tok
    • Delta Junction
    • Tanana
slide3

What is the problem?

  • Alaska has a rural population of 200,000.
    • Communities range in population from ~10s to ~1000s.
    • Most of them run isolated diesel-fired generator sets.
    • Most are not on the road system and are accessible by air or boat only.
  • The median household income in rural Alaska is $40,000.
  • Highest heat loads in the U.S., with temperatures regularly reaching -50 (F or C hardly matters at this point!).
  • Both electricity and fuel oil costs are high and volatile.
    • Electricity:
      • $0.22/kWh in Fairbanks
      • $0.40-1.00+/kWh in rural Alaska
    • Fuel oil:
      • $4.00/gallon in Fairbanks
      • $4.50-$12+/gallon in rural Alaska
slide4

Why are we interested in biomass heating?

  • 80% of energy in Alaska is used for heating*
  • Biomass is local, renewable, may be sustainably harvested.

*WHPacifc Report: “Alaska Energy Authority End Use Study: 2012”, April 30, 2012

slide5

Why are we interested in biomass heating?

  • Biomass is often widely available:
    • Land that is being cleared for development
    • Forest that is being cleared for fire remediation
    • River drift logs (unverifiable anecdotes indicate that 200,000 cords come down the Yukon each spring)
    • Unusable waste product from lumber mills
    • Wind and beetle kill
  • Even when biomass is deliberately harvested, it may be done so sustainably.
slide6

For example…

  • A phenomenal wind event in September 2012 brought down 70-90% of the trees around Tanacross and Dry Creek (~15 road miles from Tok)
  • Photo credits: Jeff Hermanns, AK DNR
slide7

Example I: Tok

  • Tok, population 1300, on the road system
slide8

Example I: Tok

  • Tok has an arid climate and is surrounded by thick forest—a recipe for fire disaster.
    • In the past 25 years, 2 million acres in the area have burned, costing $60 million for fire suppression and causing 6 evacuations
    • In 1990, a single fire burned over 100,000 acres (400 km2); in 2004, the fire almost destroyed the school and other city buildings.
    • Over 1000 firefighters could not stop the fire in 1990.
  • Bitter Creek fire currently burning east of Tok:
  • Photo by Gordon Amundson
  • Photo by AK DOF
slide9

Example I: Tok

    • Wood is cut and deliberately burned for fire remediation (3,000 acres is the target); wood is low quality (small trees) and can’t be used for lumber.
  • In 2010, a 5.5 million Btu chip-fired Messersmith biomass boiler system was installed in the 88,000 square foot Tok High School.
  • In 2011, a steam turbine was added that currently produces 60 kW, matching the average load of the school (it still needs grid power during peak times) and covering 75% of electricity needs.
  • Excess heat is still available; a greenhouse is being built to provide vegetables to school lunches, and a district heating system to neighboring city buildings is under assessment.
  • Photo courtesy of Alaska Department of Natural Resources
slide10

Example I: Tok

  • Annual heating and fire remediation costs before installation of the biomass boiler:
    • 53,000 gallons of oil at $5.50/gallon
    • $300,000 total
    • DOF spent $1000/acre for tree removal.
  • Annual heating costs after installation of the biomass boiler:
    • 300 tons of chips at low variable costs.
    • 75% of electrical power usage also displaced.
  • Funding sources:
    • $3.2 million grant from Alaska Energy Authority
    • $750,000 from the State of Alaska
  • This savings to the school has enabled the recovery of Tok’s preschool program, as well as the rehire of three staff members for the school—a music teacher, counselor, and boiler operator
slide11

Example II: Delta Junction

  • Delta Junction, population 1000, on the road system, 110 road miles from Tok
slide12

Example II: Delta Junction

  • Delta Junction leveraged the expertise developed in Tok and installed the same 5.5 million Btu chip-fired Messersmith biomass boiler system in its Delta High School, a 77,000 square-foot building, which serves 200 students.
  • Chips are purchased from Dry Creek Lumber, which rents Tok’s chipper to make chips out of scrap wood.
slide13

Example II: Delta Junction

  • Annual heating costs before installation of the biomass boiler:
    • 102,000 gallons of fuel oil at $4/gallon
    • Cost: $408,000
  • Annual heating costs after installation of the biomass boiler:
    • 500 tons of chips at $60/ton
    • 25,500 gallons of fuel oil at $4/gallon
    • Cost: $132,000
    • Efficiency increases annually as local skill increases; 1st year, 50% of oil was displaced, 2nd year, 75% of oil was displaced.
  • Funding sources:
    • $2 million grant from Alaska Energy Authority
    • $800,000 from the State of Alaska
slide14

Example III: Tanana

Tanana, population 300, not on the road system, 180 air miles from Fairbanks

  • Tanana City Hall (source: Nicholas School of the Environment, Duke University)
slide15

Example III: Tanana

  • In November 2007, the City Manager, Bear Ketzler, kicked off Tanana’s now burgeoning biomass program with the installation of two 425,000 Btu/hour cordwood-fired Garn boilers in its city washeteria.
  • The cost of installation of that first project, which included a new boiler building, was under $100,000.
  • It has displaced annually about 6000 gallons of diesel with 50 cords of wood. The first project has reduced oil consumption in the washeteria by about 50%.

Photos courtesy of State of AK Division of Community & Regional Affairs

slide16

Example III: Tanana

  • More biomass!
    • 2 Garn boilers installed to heat the city office.
    • 2 Garn boilers installed in the senior center.
    • 4 Econoburn boilers to heat the city shop and the teachers’ housing.
    • 3 more Garns are slated to be installed into various city buildings within the next year.
  • Ketzler’s goals were:
    • To reduce reliance on diesel fuel (which costs about $6.50 per gallon in Tanana
    • To create a healthy local economy around biomass. In order to achieve this, he set the price of wood at $250 per cord (which has since been raised to $300 per cord), and informed the locals that the city would purchase wood from anyone who cared to harvest it, either by pulling driftwood from the river, or by harvesting it on legal lands.
slide18

Example III: Tanana Washeteria

  • Annual heating costs before installation of the biomass boiler:
    • 12,000 gallons of fuel oil at $4.50/gallon
    • Cost: $54,000
  • Annual heating costs after installation of the biomass boiler:
    • 40 cords of wood at $250/cord: $10,000
    • 6,000 gallons of fuel oil at $4.50/gallon: $27,000
    • Cost: $37,000
  • This savings has enabled:
    • Building a new children’s playground.
    • Improvement and weatherization of the school and teacher housing; weatherization of the school has resulted in saving 7000 gallons of oil annually; it is next to be retrofitted with wood heat.
  • Money used to purchase firewood is now being circulated in the community rather than being sent Outside by oil purchase.
  • Full-time maintenance person now employed by the City.
slide19

Tanana project area woody biomass cost per ton

  • The regions in the left column are economically feasible at oil cost of greater than $4/gallon.
slide20

Thank you!

  • Daisy Huang, dhuang@alaska.edu
  • Art Nash, alnashjr@alaska.edu
slide21

Background of AEA biomass program

  • Alaska Wood Energy Development Task Group (AWEDTG)
  • “a coalition of federal and state agencies and not-for-profit organizations… to explore opportunities to increase the utilization of wood for energy and biofuels production in Alaska.” (AEA website)
  • In 2000- 2008, and 2012, over 60 communities have applied for grants for community heating projects.
slide22

ACEP biomass data collection program objectives

  • Interview communities/applicants regarding their status and progress of AEA’s pre-feasibility biomass program.
  • Document the current status of and collect available fiscal, operational, and mechanical data from those 50+ communities who received a pre-feasibility study.
  • Interview key community members to get an idea of what it takes to make a biomass program succeed.
slide23

Typical situations

  • Schools or tribal halls to start; plan to extend to other community buildings, such as clinic, washeteria, etc.
  • Former usage was diesel; diesel heater is left in place as backup.
    • ~$5-7 per gallon
    • ~10,000 – 50,000 gallons per year
  • A typical community saves $80,000-$400,000 per year.
  • Most buildings currently heated with wood-fired boilers are not using full capacity; there is excess heat; district heating loops may be installed.
slide24

Background: How do these things work?

GARN system:

Source: http://garn.com/how-garn-works-full/

Load up and fire away!