gravity at micron hartmut abele l.
Skip this Video
Loading SlideShow in 5 Seconds..
Gravity at Micron Hartmut Abele PowerPoint Presentation
Download Presentation
Gravity at Micron Hartmut Abele

Loading in 2 Seconds...

play fullscreen
1 / 22

Gravity at Micron Hartmut Abele - PowerPoint PPT Presentation

  • Uploaded on

Gravity at Micron Hartmut Abele. Galileo in Pisa. Objekt: Neutron H öhe : ~ 50 m m Fallh öhe > 50 m Fallh öhe < 50 m. QM. Hydrogen atom. QM: bei gebundenen Zuständen diskrete Energieniveaus Aufenthaltswahrscheinlichkeit: Quadrat der Wellenfunktion  n,l,m (r,,).

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about 'Gravity at Micron Hartmut Abele' - lotus

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
galileo in pisa
Galileo in Pisa

Objekt: Neutron

Höhe: ~ 50 mm

  • Fallhöhe > 50m
  • Fallhöhe < 50m
hydrogen atom


Hydrogen atom

QM: bei gebundenen Zuständen diskrete Energieniveaus

Aufenthaltswahrscheinlichkeit: Quadrat der Wellenfunktion n,l,m(r,,)





Abstand vom Spiegel


Abstand vom Spiegel

rb atoms bouncing in a stable gravitatonial cavity
Rb Atoms Bouncing in a Stable Gravitatonial Cavity

E. Hinds et al.,

Yale, Imperial College

E. Hinds et al.,

Yale, Imperial College London

observation of bound quantum states



Distance to Mirror

Observation of Bound Quantum States


Neutron mirror:

polished glass plate 10 cm long

Nature 415 299 (2002), Phys. Rev. D 67 102002 (2003).




Distance to Mirror

Schrödinger Equation

2 nd run 2002
2nd Run 2002

V. Nesvizhevsky et al., EPJ, 2005

reversed geometry
Reversed Geometry

A. Westphal, 2001

the experiment
the Experiment
  • Neutron detection:
  • He – detector
  • n + 3He  t + p
  • (no spatial resolution)
  • Track detector
  • n + 235Ufission
  • n + 10B  Li + a

15 mm

120 mm


UCN neutrons

Fission fragment


How does the

detector work?

Uranium or

Boron coating

CR39 Plastic

cr39 track detector
CR39 track detector

Uranium Detector

Boron Detector


~ 200µm

~ 10 cm

neutron density distribution with spatial resolution detector
Neutron Density Distributionwith Spatial Resolution Detector


First three levels

10 20 30 40 50mm

V. Nesvizhevsky et al., EPJ, 2005


C. Krantz,

Diploma thesis, 2006

bestimmung von g
Bestimmung von g

g = (9.8 ± 0.2) m/s2

3 2 2 newton s law and the question of large extra dimension of space and time
3.2.2 Newton´s Law and the Question of Large Extra Dimension of Space and Time
  • Deviations from Newton's law 1/r2 to 1/r2+n, for n extra large dimensions.
  • Motivated by the problem of supersymmetry breaking, new scalar forces in the sub-millimeter range for a supersymmetry breaking scale of 1 – 10 TeV. These correspond to Compton wavelengths in the range of 1 mm to 10 mm.
  • Repulsive forces mediated by possible abelian gauge fields in the bulk. The strength of the new force would be 109 to 1012 times stronger than gravity.



limits for alpha and lambda
Limits for alpha and lambda

Green: Neutron Limits


ILL Grenoble

V. Nesvizhevsky, A. Petukhov, H. Boerner, L. Lukovac, S. Roccia

LPI, Moscow

A. Voronin

Universität Heidelberg

N. Haverkamp, C. Krantz, D. Mund, S.Nahrwold, F. Rueß, T. Stöferle

PNPI, Gatchina

A. Gagarsky, G. Petrov, S. Soloviev

LPSC, Grenoble

K. Protasov

SISSA (Italien)

A. Westphal

JINR, Dubna

A. Strelkov

U. Mainz

S. Baeßler

Univ. Gent

J. Schrauwen