1 / 61

The Hetero-Ene Reaction: Development and Synthetic Utility

The Hetero-Ene Reaction: Development and Synthetic Utility. October 13, 2005 Laura Wysocki Burke Group. Outline. History and Reaction Description Hetero-Ene Reactions and Synthetic Applications Carbonyl-Ene Thio-Ene Imino-Ene Oxo-Ene (Schenck Reaction) Aza-Ene Retro-Ene All-Carbon Ene

laqueta
Download Presentation

The Hetero-Ene Reaction: Development and Synthetic Utility

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Hetero-Ene Reaction: Development and Synthetic Utility October 13, 2005 Laura Wysocki Burke Group

  2. Outline • History and Reaction Description • Hetero-Ene Reactions and Synthetic Applications • Carbonyl-Ene • Thio-Ene • Imino-Ene • Oxo-Ene (Schenck Reaction) • Aza-Ene • Retro-Ene • All-Carbon Ene • Tandem Reactions in Synthesis • Conclusion

  3. Discovery: Alder’s “Substituting Addition” Alder, K.; Pascher, F.; Schmitz, A. Ber. Dtsch. Chem. Ges.1943, 76, 27 Nobel Lectures. Chemistry. 1942-1962. Elsevier: Amsterdam. 1964, 253

  4. Discovery: Tandem Substituting Addition and Diene Synthesis Alder, K.; Münz, F. Ann. Chem.1949, 565, 126 Nobel Lectures. Chemistry. 1942-1962. Elsevier: Amsterdam. 1964 pp. 253

  5. Ene and Diels-Alder • “Enophile” rather than “Dienophile” • Good dienophile usually good enophile • Ene often side reaction of Diels-Alder • Some catalysts are effective for both reactions

  6. Ene and Diels-Alder • Endo and exo transition states can be described, like Diels-Alder • Slight endo preference is sensitive to steric effects • Ene has higher activation energy than Diels-Alder, leading to the necessity of higher temperatures • Ene favored by electron withdrawing groups on enophile, strain in ene, and geometric alignment

  7. Mechanism: Concerted or Stepwise? • Continuum of possible reaction mechanisms • Placement of reaction on continuum depends on system and conditions: • Thermal, all carbon, low strain - asynchronous concerted • Strained systems unable to achieve geometry - biradical • Lewis acid catalyzed - close to zwitterionic

  8. Intramolecular Ene Reaction • Intramolecular lower activation energy than intermolecular because of entropic advantage • Useful regio- and stereoselectivity • Classified into three major types Oppolzer, W.; Snieckus, V. Angew. Chem., Int. Ed. Engl.1978, 17, 476

  9. Outline • History and Reaction Description • Hetero-Ene Reactions and Synthetic Applications • Carbonyl-Ene • Thio-Ene • Imino-Ene • Oxo-Ene (Schenck Reaction) • Aza-Ene • Retro-Ene • All-Carbon Ene • Tandem Reactions in Synthesis • Conclusion

  10. Carbonyl-Ene

  11. Carbonyl-Ene: Thermal vs. Lewis Acid • Thermal Ene: Steric accessibility of double bond and allylic hydrogen are primary concern • Lewis Acid-Promoted Ene: Positive charge develops at the ene component so trisubstituted alkene more reactive than monosubstituted Mikami, K.; Shimizu, M. Chem. Rev.1992, 92, 1021

  12. Carbonyl-Ene: Thermal vs. Lewis Acid syn/anti selectivity is reversed with the use of a Lewis Acid Mikami, K.; Shimizu, M. Chem. Rev.1992, 92, 1021

  13. Transition State Geometry Thermal Reaction “Envelope” Early Transition State Lewis Acid Catalyzed “Chair-like” Late Transition State Loncharich, R. J.; Houk, K. N. J. Am. Chem. Soc.1987, 109, 6947 Mikami, K.; Loh, T.-P.; Nakai, T. Tetrahedron Lett.1988, 29, 6305

  14. Thermal Transition State syn anti Benner, J. P.; Gill, G. B.; Parrott, S. J.; Wallace, B.; Begley, M. J. J. Chem. Soc. Perkin Trans. I1984, 315

  15. Lewis Acid Transition State syn anti Mikami, K.; Shimizu, M. Chem. Rev.1992, 92, 1021

  16. Carbonyl-Ene: Asymmetric Reaction si face addition Whitesell, J. K. Acc. Chem. Res.1985, 18, 280

  17. Carbonyl-Ene: Asymmetric Reaction Maruoka, K.; Hoshino, Y.; Shirasaka, T.; Yamamoto, H. Tetrahedron Lett.1988, 29, 3967

  18. Carbonyl-Ene: Asymmetric Reaction With BINOL 33% ee, product in 91.4% yield and 92% ee Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc.1990, 112, 3949

  19. Carbonyl-Ene: Positive Non-Linear Effect Mikami, K.; Shimizu, M. Chem. Rev.1992, 92, 1021

  20. Carbonyl-Ene: Proposed Transition State Mikami, K.; Narisawa, S.; Shimizu,M.; Terada, M. J. Am. Chem. Soc.1992, 114, 6566 Corey, E. J.; Barnes-Seeman, D.; Lee, T. W.; Goodman, S. N. Tetrahedron Lett.1997, 38, 6513

  21. Carbonyl-Ene: Asymmetric Reaction Johnson, J. S.; Evans, D. A. Acc. Chem. Res.2000, 33, 325

  22. Carbonyl-Ene: Reversal of Stereochemistry X-Ray crystal structures Geometry distortion from planarity Evans, D. A.; Johnson, J. S.; Burgey, C. S.; Campos, K. R. Tetrahedron Lett.1999, 40, 2879

  23. Carbonyl-Ene: Transition State Square planar Cu(II) Nucleophilic attack from si face endo transition state anti selective Johnson, J. S.; Evans, D. A. Acc. Chem. Res.2000, 33, 325 Evans, D. A.; Tregay, S. W.; Burgey, C. S.; Paras, N. A.; Vojkovsky, T. J. Am. Chem. Soc.2000, 122, 7936

  24. Carbonyl-Ene: Asymmetric Reaction exo transition state syn selectivity Evans, D.A.; Wu, J. J. Am. Chem. Soc.2005, 127, 8006

  25. Carbonyl-Ene: Desymmetrization Whitesell, J. K., Allen, D. E. J. Org. Chem.1985, 50, 3025 Whitesell, J. K.; Allen, D. E. J. Am. Chem. Soc.1988, 110, 3585

  26. Carbonyl-Ene in Synthesis Takagaso Process for production of menthol Nakatani, Y.; Kawashima, K. Synthesis1978, 147

  27. Carbonyl-Ene in Synthesis Shortened synthesis of this piece by 13 steps Pitts, M. R.; Mulzer, J. Tetrahedron Lett.2002, 43, 8471

  28. Oxonium-Ene in Synthesis Overman, L. E.; Thompson, A. S. J. Am. Chem. Soc.1988, 110, 2248

  29. Oxonium-Ene in Synthesis kH/kD = 1.65 Blumenkopf, T. A.; Look, G. C.; Overman, L. E. J. Am. Chem. Soc.1990, 112, 4399

  30. Thio-Ene

  31. Thio-Ene: Regioselectivity Bachrach, S. M.; Jiang, S. J. Org. Chem.1997, 62, 8319

  32. Thio-Ene: Regioselectivity To alcohol Ea= 31.12 Erxn= -7.97 To thiol Ea= 20.15 Erxn= -18.75 To ether Ea= 44.73 Erxn= -1.04 To sulfide Ea= 21.44 Erxn= -19.70 All numbers in kcal/mol Bachrach, S. M.; Jiang, S. J. Org. Chem.1997, 62, 8319

  33. Imino-Ene Borzilleri, R. M.; Weinreb, S. M. Synthesis1995, 347

  34. Imino-Ene: Asymmetric Reaction Ferraris, D.; Young, B.; Cox, C.; Dudding, T.; Drury, W. J. III; Ryzhkov, L.; Taggi, A. E.; Lectka, T. L. J. Am. Chem. Soc.2002, 124, 67

  35. Imino-Ene: Synthesis Borzilleri, R. M.; Weinreb, S. M.; Parvez, M. J. Am. Chem. Soc.1995, 117, 10905

  36. Imino-Ene: Synthesis Elder, A. M.; Rich, D. H. Org. Lett.1999, 1, 1443

  37. Oxo-Ene (Schenck Reaction) Schenck, G. O.; Schulte-Elte, K. Liebigs Ann. Chem.1958, 618, 185

  38. Schenck Reaction: Transition State CASSCF/6-31G* Houk used potential energy surfaces to conclude a highly asynchronous concerted mechanism takes place UB3LYP/6-31G* RB3LYP/6-31 Leach, A. G.; Houk, K. N. Chem. Commun.2002, 1243

  39. Schenck Reaction: Regioselectivity ‘cis effect’: the more substituted side of the double bond is the most reactive - also seen with allylic alcohols, styrene-type molecules, and trisubstituted enol ethers Hydrogen next to bulky group is usually more reactive Stratakis, M.; Orfanopoulos, M. Tetrahedron2000, 56, 1595

  40. Schenck Reaction: Synthesis Dussault, P. H.; Woller, K. R. J. Am. Chem. Soc.1997, 119, 3824

  41. Aza-Ene Hoffman, H. M. R. Angew. Chem., Int. Ed. Engl.1969, 8, 556

  42. Aza-Ene: Transition State Stepwise Ene reactions proceed through diradical intermediates, which have high rotational barriers about the single bonds. Leach, A. G.; Houk, K. N. Chem. Commun.2002, 1243

  43. Aza-Ene: Indole Protection Using Methyl Triazolinedione (MTAD) Baran, P. S.; Guerrero, C. A.; Corey, E. J. Org. Lett.2003, 5, 1999

  44. Aza-Ene: Synthesis Baran, P. S.; Guerrero, C. A.; Corey, E. J. J. Am. Chem. Soc.2003, 125, 5628

  45. Retro-Ene • Higher temperatures required for retro-ene (Flash Vacuum Thermolysis) • Like Ene reaction, the mechanism of Retro-ene can be anywhere from concerted to stepwise radical or polar, depending on the ene-adduct • Hetero-retro-ene reactions are widespread with heteroatoms in any of the 5 centers involved • Retro-ene can be used to generate reactive species Ripoll, J.-L.; Vallée, Y. Synthesis1993, 659

  46. Retro-Ene: Synthesis Touré, B. B.; Hall, D. G. J. Org. Chem.2004, 69, 8429

  47. Outline • History and Reaction Description • Hetero-Ene Reactions and Synthetic Applications • Carbonyl-Ene • Thio-Ene • Imino-Ene • Oxo-Ene (Schenck Reaction) • Aza-Ene • Retro-Ene • All-Carbon Ene • Tandem Reactions in Synthesis • Conclusion

  48. All-Carbon Ene • Carbon-carbon bond forming with atom economy • Can proceed with high levels of selectivity • Thermal reaction still suffers from high temperatures • Alkyne enophiles proceed more easily than alkene enophiles • Recent advances in transition metal catalyzed all-carbon ene reactions have greatly improved their synthetic utility • Trost’s Ru catalyst for alkene-alkyne coupling

  49. All-Carbon Ene: Stereoselectivity Mikami, K.; Takahashi, K.; Nakai, T. Synlett1989, 45

  50. All-Carbon Ene: Ru Catalyst Trost, B. M.; Toste, F. D. Tetrahedron Lett.1999, 40, 7739 Trost, B. M.; Pinkerton, A. B.; Toste, F. D.; Sperrle, M. J. Am. Chem. Soc.2001, 123, 12504

More Related