1 / 27

EAST 等离子体启动

EAST 等离子体启动. 肖炳甲 2009/02/23. Plasma Startup: 击穿和建立、电流上升、成形. 物理问题. 低环电压 breakdown 降低磁体端电压、减小磁通消耗和降低逃逸 上升段电流、位置、位形的控制 磁场、平衡重建 , 导体间的耦合,等离子体模型,真空室的三维结构的影响 … 电流上升与不稳定性的关系, Profile 控制 , operation limits. 击穿与初始上升实现. PF/PS 系统 = 》 合适的欧姆场和垂直场 充气 = 》 在合适的时间内合适的气体压力

kera
Download Presentation

EAST 等离子体启动

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EAST等离子体启动 肖炳甲 2009/02/23

  2. Plasma Startup: 击穿和建立、电流上升、成形

  3. 物理问题 • 低环电压breakdown • 降低磁体端电压、减小磁通消耗和降低逃逸 • 上升段电流、位置、位形的控制 • 磁场、平衡重建, 导体间的耦合,等离子体模型,真空室的三维结构的影响… • 电流上升与不稳定性的关系,Profile控制, operation limits

  4. 击穿与初始上升实现 • PF/PS系统 =》合适的欧姆场和垂直场 • 充气 =》在合适的时间内合适的气体压力 • Wall conditioning => Low impurities • Pre-ionization aided by ICRF or LHW • Enough seed electrons in longer duration to meet the Townsend Avalanche in a not well-controlled stray field and Loop Voltage. • RF heating aiding to overcome radiation barrier • IP**2*R + Paux > Etransport + Eradiation

  5. 基本模型 • 系统构成: • PF线圈 • PF电源及电阻 • 真空室及被动结构 • 击穿后,等离子体 • 模型方程

  6. 线圈系统

  7. 线圈系统: • PF互感 快控: 被动结构

  8. Coil No. Rated current (kA) Max. voltage (kV) load steady voltage (V) R1 (R2) (mΩ) PS1 1 -14.5~ 14.5 1.2 280 150 PS2 2 -14.5~ 14.5 1.2 280 150 PS3 3 -14.5~ 14.5 1.2 280 150 PS4 4 -14.5~ 14.5 1.2 280 150 PS5 5 -14.5~ 14.5 1.2 280 150 PS6 6 -14.5~ 14.5 1.2 280 150 PS7 7 ,9 -14.5~ 14.5 2.4 560 150 PS8 8,10 -14.5~ 14.5 2.4 560 150 PS9 11 -14.5~ 14.5 0.6 280 150 PS10 12 -14.5~ 14.5 0.6 280 150 PS11 13 -14.5~ 14.5 0.26 160 1500 PS12 14 -14.5~ 14.5 0.26 160 1500 ASIPP Parameters of PF Power Supply • Note: • (1) Coil 7 and Coil 9 is in series, they share one power supply, same as Coil 8 and Coil 10. • (2)Max. Voltage is only used as plasma initiation and fast rising. • R1 =R2, it is designed according to the plasma scenario some years ago. They (PS1—PS10) can be respectively changed from zero to above value in step 7.5mΩ, Other (PS11—PS12 ) is in step 50mΩ .

  9. EAST 等离子体控制中的电磁测量 极向场线圈电流(Rowgowski):12 等离子体电流(Rogowski, in-/ex-vessel) :2 磁通环:37 磁探针:38 内部线圈电流:1 控制目标: R ~ 1.8, a~0.4 Ip ~ 0.5 MA (1 MA, 1.5MA) delta 0.3-0.6 k ~ 1.5 – 2.0 DN/SN

  10. 击穿条件 1. 足够长的连接长度和环电压 Or Emin = 950p/ ln(3.88pL) For EAST: MPF-IP~3Vs/8kA, dI/dtmax=20 kA/s so Vmax=MdI/dtmax~ 7.5 V E~6 V/2PiR~0.5 V/m (0.7 for JET, 0.3 for ITER) Bp<10 Gauss @Bt=2 T Bp<1 Gauss @Bt=0.2 T (Itf~1kA) 2. 合适的气体压力 1. Tanga et al., in Tokamak Startup 2. Lloyd B et al., Nucl Fusion 31

  11. 击穿优化方法 • 初始零场 • CS尽可能达到最大 • 选取预期初始等离子体圆周上数点,调节线圈电流,用最小二乘得到IM state • 击穿电压及零场 • Idot总数:4 • CS以相同的下降率 • 上下对称 • 预期击穿时间及环电压(或电场) • 基于给定PF电压,得到Idot求解回路方程,得到Ivv,从而计算磁场和环电压,与目标值作最小二乘优化得到Idot和VS • Ip=0,RPF=0,

  12. Optimization target: • Initial Flux • Null region • Emax~ 0.5 V/m • Initial ramp-up rate and Bz • Field Curvature • Limitation: • Imax, Idotmax Courtesy to J. Leuer,

  13. 初始上升 • Bz=m0Ip/R0[ln(8R0/a)+li/2+b-1.5] • LPdIP/dt=V0-Vres • Assume: Vres/V0=0.5 • dIP/dt~ 0.5-1 MA/s • Spitzer Resistivity: • (ne=1e19,Te=100eV=>Rp~20mW) • Lp~4.8mH

  14. 击穿电阻及PCS waveform • RPF=mean(Vtraj/Itraj) • 再次求解(1),得到新的V和I • Itraj: Feedback Current Control • Vtraj: Feedforward • Note:根据实际的电阻可调整最近的RPF,重新计算(1)

  15. 优化1:R0=1.7,a=0.35, psi=3 Vs

  16. 磁通(角向分布)

  17. 优化2:R0=1.7,a=0.35不考虑初始上升

  18. 优化3:R0=1.8,a=0.4不考虑初始上升

  19. PF current /PS Voltage Trajectory @ Plasma Current Ramp-up: #8815

  20. 等离子体电流上升(环电压=1V only) 对极向场电压的要求

  21. Proposal: Startup optimization • Objectives: • Robust startup • Low loop voltage initiation • Flux consumption reduction • Shaping while ramping, position control at earlier time, impurity reduction • MHD avoidance while ramping up, ramping-up margin & operation limits, preliminary profile control • Methods • Null field adjustment, various IM states and BD resistor tuning • Gas filling scan • Ramp-up rate adjustment in accordance with Bv variation • Assistance of ICRF(100 kW?) pre-ionization • LHW (200 kW?) in the startup, time: just after plasma initiation is possible? • Bt scan • Diagnostics • Magnetics, CCD, density, Te, P(RF), magnetics at the PS end, Bolometry, Impurity • Modeling: • Reconstruction, breakdown, TSC, DIII-D analysis tools • Machine times: > 2 effective days

More Related