1 / 57

Introduction to Animals

Introduction to Animals. Over a million different types have been identified! Animals likely evolved from protozoans. Kingdom Protista. Section 1. blastula (596) ectoderm (596) endoderm (596) mesoderm (596) body plan (598) asymmetrical (598) radial symmetry (598)

jerold
Download Presentation

Introduction to Animals

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to Animals

  2. Over a million different types have been identified! • Animals likely evolved from protozoans. Kingdom Protista

  3. Section 1 • blastula (596) • ectoderm (596) • endoderm (596) • mesoderm (596) • body plan (598) • asymmetrical (598) • radial symmetry (598) • bilateral symmetry (598) • cephalization (599) • coelom (600) • acoelomate (600) • pseudocoelomate (600) • coelomate (600) • phylogenetic tree (602)

  4. Characteristics of Animals All animals share these general features: • heterotrophy, • mobility, • multicellularity, • sexual reproduction, • diploidy, • the absence of a cell wall, • cells organized as tissues, and • blastula formation.

  5. heterotrophy, Can’t make their own food… must eat things.

  6. mobility, • Animals can swim, crawl, walk, run, and even fly. • Some only move in the larval stage… the sponge

  7. multicellularity, • Made up of more then one cell! • Although animals come in a wide range of sizes, the cell sizes are all very similar!

  8. sexual reproduction • Almost all animals reproduce sexually by producing gametes. • Unlike the egg cells, the sperm cells of animals have a flagella and are highly mobile.

  9. diploidy, adults have two copies of each chromosome, one inherited from their father and one from their mother.

  10. the absence of a cell wall, Among the cells of multicellular organisms, only animal cells lack rigid cell walls. The absence of a cell wall has allowed animals mobility that other multicellular organisms do not have.

  11. blastula formation In all animals except sponges, the zygote (fertilized egg cell) undergoes cell divisions that form a hollow ball of cells called a blastula.

  12. cells organized as tissues Cells within the blastula eventually develop into three distinct layers of cells endoderm, ectoderm, and mesoderm . These layers are called the primary tissue layers because they give rise to all of the tissues and organs of the adult body.

  13. tissues tissues are groups of cells with a common structure that work together to perform a specific function.

  14. Body Symmetry All animals have their own particular body plan, a term used to describe an animal’s shape, symmetry, and internal organization.

  15. 3 body symmetry

  16. Asymmetry. Animals that grow in an irregular pattern, such as a sponge, show asymmetry.

  17. radial symmetry Animals with radial symmetry have body parts arranged around a central axis.

  18. bilateral symmetry Animals with bilateral symmetry have a distinct right and left half, and most display cephalization.

  19. body plans Animals have one of three basic body plans: acoelomate, pseudocoelomate, and coelomate.

  20. coelom a body cavity, coelom or (SEE luhm), a fluid-filled space found between the body wall and the digestive tract (gut). This space is lined with cells that come from mesoderm.

  21. Coelomates are either protostomes or deuterostomes. • Protostomes (first mouth) are coelomates whose embryonic development shows a blastopore associated with a mouth. • Deuterostomes (second mouth) are coelomates whose embryonic development shows a blastopore associated with an anus, with a second opening forming the mouth (hence "second mouth").

  22. acoelomate Animals with no body cavity are called acoelomate (ay SEEL oh mayts). The space between an acoelomate’s body wall and gut is completely filled with tissues

  23. pseudocoelomate have a body cavity located between the mesoderm and endoderm. Their body cavity is called a pseudocoelom (false coelom)

  24. Body plans

  25. Segmentation Segmentation in body structure underlies the organization of all advanced animals.

  26. Some animals have their bodies divided into segments. This allows them to specialize certain segments, such as for antennae, eyes, claws, etc. Humans, insects, and earthworms are examples of segmented animals.

  27. animal phyla There are about 35 animal phyla, which contain an extraordinary range of body forms and body systems. .

  28. phylogenetic tree To visually represent the relationships among various groups of animals, scientists often use a type of branching diagram called a phylogenetic tree. It shows how animals are related through evolution

  29. Scientists classify animals using several different types of data, which include comparing anatomy and physiology, patterns of development, and DNA.

  30. The animal kingdom is divided in two groups: vertebrates and invertebrates

  31. Section 2 • gastrovascular cavity (605) • respiration (605) • gill (605) • open circulatory system (606) • closed circulatory system (606) • hydrostatic skeleton (607) • exoskeleton (607) • endoskeleton (608) • hermaphrodite (609) • external fertilization (610) • internal fertilization (610)

  32. Animal Body Systems Body systems are specialized to carry out different tasks. Levels of organization: Cells tissues organs organ systems organisms

  33. Digestive systems • Simple animals have a gastrovascular cavity with only one opening, while more-complex animals have a one-way gut.

  34. Respiration/ gas exchange Simple animals exchange gases directly through their skin. More-complex aquatic animals use gills, while terrestrial animals use a variety of respiratory organs, such as lungs.

  35. circulatory system In an open circulatory system, circulatory fluid leaves the vessels and enters the body cavity. In a closed circulatory system, blood remains in the vessels.

  36. open circulatory system -- primitive system found in insects and crustaceans -- blood not always contained in blood vessels -- heart pumps hemolymph (blood and cell fluids) into vessels, but vessels empty into large cavities or sinuses containing organs -- blood diffuses through tissues and back into heart.

  37. closed circulatory system -- found in higher animals -- system is "closed" because the blood is always contained in vessels.

  38. Nervous System While simple animals have little coordination among their nerve cells, complex animals have nerve cords and a brain with associated sensory structures.

  39. Excretory System For most animals, eliminating wastes is linked to maintaining the correct water balance in their body.

More Related