1 / 36

Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples

H. Sun and G. T. Schuster. University of Utah. Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples. Outline. Problems in Kirchhoff Migration Wavepath Migration Implementation of WM Numerical Results Conclusions. Specular Ray. Forward Modeling.

janae
Download Presentation

Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. H. Sun and G. T. Schuster University of Utah Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples

  2. Outline • Problems in Kirchhoff Migration • Wavepath Migration • Implementation of WM • Numerical Results • Conclusions

  3. Specular Ray Forward Modeling ( Xg, 0 ) ( Xs, 0 )

  4. 3D Fat Ellipsoid 3D Kirchhoff Migration ( Xg, 0 ) ( Xs, 0 )

  5. A B C 3-D KM of a Single Trace C B A R S

  6. Problems in Kirchhoff Migration Traveltime Information Where Was Wave Reflected ? The Whole Fat Ellipsoid ! Problem 1 Problem 2 Strong Far-Field Migration Artifact Slow for 3-D Iterative Velocity Analysis

  7. Outline • Problems in Kirchhoff Migration • Wavepath Migration • Implementation of WM • Numerical Results • Conclusions

  8. Fat Ray Fat Ellipsoid 3 KM : Fat Ellipsoid, O(N ) WM: Hatching Area, O(N ) 1.5 3D Wavepath Migration ( Xg, 0 )

  9. A B C 3-D WM of a Single Trace C B A R S

  10. True Reflection point Small Migration Aperture Fewer Artifacts Less Expensive Wavepath Migration Traveltime + Ray Direction

  11. Key Goals of 3-D WM • To Achieve Higher CPU Efficiency • Compared to 3-D KM • To Generate Comparable or Better • Image Quality than 3-D KM

  12. Related References • Time-Map Migration • Sherrif & Geldhart (1985) • Wave Equation Tomography • Woodward & Rocca (1988) • Gaussian Beam Migration • Ross Hill (1990) • Kirchhoff Beam Migration • Yonghe Sun et al., (1999)

  13. Outline • Problems in Kirchhoff Migration • Wavepath Migration • Implementation of WM • Numerical Results • Conclusions

  14. Quasi-ellipsoid Fresnel Zone Migration Raypath Raypath Key Steps in WM R S Quasi-ellipsoid

  15. Outline • Problems in Kirchhoff Migration • Wavepath Migration • Implementation of WM • Numerical Results • 3-D Prestack Point Scatterer Data • 3-D Prestack SEG/EAGE Salt Data • 3-D Prestack West Texas Field Data • Conclusions

  16. 3-D Prestack KM Point Scatterer Response 0.1 0.4 Reflectivity Reflectivity Z0-9 Z0-1 -0.05 -0.2 1 1 1 1 Y Offset (km) Y Offset (km) X Offset (km) X Offset (km) 0 0 1 0.02 Reflectivity Reflectivity Z0 Z0+8 -0.5 -0.01 1 1 1 1 Y Offset (km) Y Offset (km) X Offset (km) X Offset (km) 0 0

  17. 3-D Prestack WM Point Scatterer Response 0.1 0.4 Reflectivity Reflectivity Z0-9 Z0-1 -0.05 -0.2 1 1 1 1 Y Offset (km) Y Offset (km) X Offset (km) X Offset (km) 0 0 1 0.02 Reflectivity Reflectivity Z0 Z0+8 -0.5 -0.01 1 1 1 1 Y Offset (km) Y Offset (km) X Offset (km) X Offset (km) 0 0

  18. Outline • Problems in Kirchhoff Migration • Wavepath Migration • Implementation of WM • Numerical Results • 3-D Prestack Point Scatterer Data • 3-D Prestack SEG/EAGE Salt Data • 3-D Prestack West Texas Field Data • Conclusions

  19. A Common Shot Gather Trace Number 1 390 0 Time (sec) 5.0

  20. SALT Inline Velocity Model Offset (km) 0 9.2 0 Depth (km) 3.8

  21. Inline KM(CPU=1) Inline WM(CPU=1/33) Offset (km) Offset (km) 0 9.2 0 9.2 0 Depth (km) 3.8

  22. Inline KM(CPU=1) Inline WM(CPU=1/170) (subsample) Offset (km) Offset (km) 0 9.2 0 9.2 0 Depth (km) 3.8

  23. Zoom Views of Inline Sections KM WM Sub WM Model Offset: 3~6.5 km, Depth: 0.3~1.8 km

  24. Zoom Views of Crossline Sections KM WM Sub WM Model Offset: 1.8~4 km, Depth: 0.6~2.1 km

  25. Horizontal Slices (Depth=1.4 km) KM WM Sub WM Model Inline: 1.8~7.2 km, Crossline: 0~4 km

  26. Outline • Problems in Kirchhoff Migration • Wavepath Migration • Implementation of WM • Numerical Results • 3-D Prestack Point Scatterer Data • 3-D Prestack SEG/EAGE Salt Data • 3-D Prestack West Texas Field Data • Conclusions

  27. A Common Shot Gather 54 Trace Number 193 0 Time (sec) 3.4

  28. Inline KM (CPU=1) Inline WM(CPU=1/14) Offset (km) Offset (km) 0.4 4.5 0.4 4.5 0.8 Depth (km) 3.8

  29. Inline KM(CPU=1) Inline WM(CPU=1/50) (subsample) Offset (km) Offset (km) 0.4 4.5 0.4 4.5 0.8 Depth (km) 3.8

  30. Crossline KM (CPU=1) Crossline WM(CPU=1/14) Offset (km) Offset (km) 0.3 3.5 0.3 3.5 0.8 Depth (km) 3.3

  31. Crossline KM(CPU=1) Crossline WM(CPU=1/50) (subsample) Offset (km) Offset (km) 0.3 3.5 0.3 3.5 0.8 Depth (km) 3.3

  32. Horizontal Slices (Depth=2.5 km) WM (Sub, CPU=1/50) KM (CPU=1) WM (CPU=1/14) Inline: 0~4.6 km, Crossline: 0~3.8

  33. Outline • Problems in Kirchhoff Migration • Wavepath Migration • Implementation of WM • Numerical Results • Conclusions

  34. Conclusions • SEG/EAGE Salt Data • Fewer Migration Artifacts • Better for Complex Salt Boundary • Higher Computational Efficiency • CPU • KM: 1 WM: 1/33 • Subsampled WM: 1/170

  35. Conclusions • West Texas Field Data • Fewer Migration Artifacts • Similar Image Quality • Higher Computational Efficiency • CPU • KM: 1 WM: 1/14 • Subsampled WM: 1/50

  36. Acknowledgements We thank UTAM sponsors for their financial support

More Related