1 / 49

2D/3D Shape Manipulation, 3D Printing

CS 6501. 2D/3D Shape Manipulation, 3D Printing. Digital Geometry Processing -- Mesh Smoothing. Outlook – Topics. Smoothing Parameterization Remeshing. Surface Smoothing – Motivation. Scanned surfaces can be noisy. Surface Smoothing – Motivation. Scanned surfaces can be noisy.

jacqui
Download Presentation

2D/3D Shape Manipulation, 3D Printing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS 6501 2D/3D Shape Manipulation,3D Printing Digital Geometry Processing -- Mesh Smoothing

  2. Outlook – Topics • Smoothing • Parameterization • Remeshing Olga Sorkine-Hornung

  3. Surface Smoothing – Motivation • Scanned surfaces can be noisy Olga Sorkine-Hornung

  4. Surface Smoothing – Motivation • Scanned surfaces can be noisy Olga Sorkine-Hornung

  5. Surface Fairing – Motivation • Marching Cubes meshes can be ugly • Why is the left mesh ugly? • Why is the right mesh ugly? • What is the problem with such triangles? Olga Sorkine-Hornung

  6. Filtering Curves • Discrete second derivative: • In matrix-vector form for the whole curve Olga Sorkine-Hornung

  7. Filtering Curves • Gaussian filtering • Scale factor 0 <  < 1 • Matrix-vector form: Olga Sorkine-Hornung

  8. Filtering Curves • Gaussian filtering • Scale factor 0 <  < 1 • Drawbacks • ? Olga Sorkine-Hornung

  9. Filtering Curves • Gaussian filtering • Scale factor 0 <  < 1 • Drawbacks • Causes the curve/mesh to shrink; slow Olga Sorkine-Hornung

  10. Filtering Curves Original curve Olga Sorkine-Hornung

  11. Filtering Curves 1st iteration; =0.5 Olga Sorkine-Hornung

  12. Filtering Curves 2nd iteration; =0.5 Olga Sorkine-Hornung

  13. Filtering Curves 8th iteration; =0.5 Olga Sorkine-Hornung

  14. Filtering Curves 27th iteration; =0.5 Olga Sorkine-Hornung

  15. Filtering Curves 50th iteration; =0.5 Olga Sorkine-Hornung

  16. Filtering Curves 500th iteration; =0.5 Olga Sorkine-Hornung

  17. Filtering Curves 1000th iteration; =0.5 Olga Sorkine-Hornung

  18. Filtering Curves 5000th iteration; =0.5 Olga Sorkine-Hornung

  19. Filtering Curves 10000th iteration; =0.5 Olga Sorkine-Hornung

  20. Filtering Curves 50000th iteration; =0.5 Olga Sorkine-Hornung

  21. Recap: Laplace-Beltrami • High-pass filter: extracts local surface detail • Detail = smooth(surface) – surface • Smoothing = averaging Olga Sorkine-Hornung

  22. Recap: Laplace-Beltrami • The direction of iapproximates the normal • The size approximates the mean curvature  Olga Sorkine-Hornung

  23. L-B: Weighting Schemes • Ignore geometry • Integrate over Voronoiregion of the vertex duniform: Wi = 1, wij= 1/di  n dcotan: wij = 0.5(cotaij+ cotbij) aij bij Wi =Ai Olga Sorkine-Hornung

  24. LaplacianMatrix • The transition between xyzand  is linear: L x x = L y y = z z L = Olga Sorkine-Hornung

  25. LaplacianMatrix • Breaking down the Laplace matrix: • M = mass matrix; Lw = stiffness matrix L M–1 Lw = Olga Sorkine-Hornung

  26. Taubin Smoothing: Explicit Steps • Iterate: •  > 0to smooth;  < 0 to inflate • Originally proposed with uniform Laplacianweights 10 iterations original 50 iterations 200 iterations A Signal Processing Approach to Fair Surface DesignGabriel Taubin ACM SIGGRAPH 95 Olga Sorkine-Hornung

  27. Taubin Smoothing: Explicit Steps • Per-vertex iterations • Simple to implement • Requires many iterations • Need to tweak μand λ 10 iterations original 50 iterations 200 iterations A Signal Processing Approach to Fair Surface DesignGabriel Taubin ACM SIGGRAPH 95 Olga Sorkine-Hornung

  28. Example 20 iterations 5 iterations 0 iterations Olga Sorkine-Hornung

  29. Mesh Independence • Result of smoothing with uniform Laplacian depends on triangle density and shape • Why? • Asymmetric results although underlying geometry is symmetric original uniform cotan Olga Sorkine-Hornung

  30. Mesh Independence • Result of smoothing with uniform Laplacian depends on triangle density and shape • Why? • Asymmetric results although underlying geometry is symmetric original uniform cotan Olga Sorkine-Hornung

  31. Implicit Fairing: Implicit Euler Steps • In each iteration, solve for the smoothed x: Implicit fairing of irregular meshes using diffusion and curvature flowM. Desbrun, M. Meyer, P. Schroeder, A. Barr ACM SIGGRAPH 99 Olga Sorkine-Hornung

  32. Smoothing as (mean curvature) Flow • Model smoothing as a diffusion process • Discretize in time, forward differences: Olga Sorkine-Hornung

  33. Smoothing as (mean curvature) Flow • Model smoothing as a diffusion process • Discretize in time, forward differences: Explicit integration Unstable unless time step dt is small Olga Sorkine-Hornung

  34. Smoothing as (mean curvature) Flow • Model smoothing as a diffusion process • Backward Euler for unconditional stability Olga Sorkine-Hornung

  35. Implicit Fairing Implicit fairing of irregular meshes using diffusion and curvature flowM. Desbrun, M. Meyer, P. Schroeder, A. Barr ACM SIGGRAPH 99 Olga Sorkine-Hornung

  36. Implicit Fairing • The importance of using the right weights Mean curvature Mean curvature Uniform(umbrella) cotan Olga Sorkine-Hornung

  37. Laplacian Mesh Optimization • Smoothing, improving of triangle shapes • Basic idea: formulate a “shopping list”, solve with least squares Laplacian Mesh Optimization ACM GRAPHITE 2006 A. Nealen, T. Igarashi, O. Sorkine, M. Alexa Olga Sorkine-Hornung

  38. Laplacian Mesh Optimization • Smoothing, improving of triangle shapes • Basic idea: formulate a “shopping list”, solve with least squares • Smooth mesh: Lx = 0 • Passes close to input data set: x = x • Well-shaped triangles: Lunix = Lcotx • The terms are weighted according to importance and geometry Laplacian Mesh Optimization ACM GRAPHITE 2006 A. Nealen, T. Igarashi, O. Sorkine, M. Alexa Olga Sorkine-Hornung

  39. WP WP WL WL X Smoothing • Meshsmoothing L = Lcot (outer fairness) or L = Luni(outer and inner fairness) • Controlled by WP and WL(Intensity, Features) L x 0 Lx = 0 = x = x n aij bij Olga Sorkine-Hornung

  40. Using WP original w = 0.2 w = 0.02 Olga Sorkine-Hornung

  41. Using WP and WL test model with added noise without WL with WL Olga Sorkine-Hornung

  42. WP WP x Triangle Shape Optimization Luni dcot x = n n Lunix = Lcotx Olga Sorkine-Hornung

  43. Positional Weights Olga Sorkine-Hornung

  44. Constant Weights Olga Sorkine-Hornung

  45. Linear Weights Olga Sorkine-Hornung

  46. CDF Weights Olga Sorkine-Hornung

  47. Original Olga Sorkine-Hornung

  48. Triangle Shape Optimization Olga Sorkine-Hornung

  49. Thank You

More Related