1 / 41

Hadrons@FAIR, FIAS June 26th, 2008

f and w mesons in medium: theoretical aspects and experimental information. Daniel Cabrera *. Departamento de F í sica Te ó rica II Universidad Complutense, Madrid. Hadrons@FAIR, FIAS June 26th, 2008. * in collaboration with L.Tol ó s, A.Ramos and R. Rapp.

fred
Download Presentation

Hadrons@FAIR, FIAS June 26th, 2008

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. f and w mesons in medium: theoretical aspects and experimental information Daniel Cabrera * Departamento de Física Teórica II Universidad Complutense, Madrid Hadrons@FAIR, FIAS June 26th, 2008 * in collaboration with L.Tolós, A.Ramos and R. Rapp

  2. K,K: strangeness in hot and dense matter • f meson decays in medium • w selfenergy in nuclear matter • r-p cloud beyond Tr approximation Outline Experimental information on f and w meson in-medium decays Progress on theoretical work

  3. CLAS-g7 Col.: g-A reaction + r, w, f e+e- decay C. Djalali et al., Int.J.Mod.Phys.A22:380-387,2007; M.H. Wood et al., arXiv:0803.0492 f and w mesons in the medium: experimental information • HIC’s 28Si + 196Au: BNL-AGS E802, Y. Akiba et al., Phys. Rev. Lett. 96 (1996) 2021 • Au + Au: PHENIX Col., Adler et al., nucl-ex/0410012 (vacuum decays) MV(r)/MV = 1 – k r/r0, k ≈ 0.10, DG≈ 0 • KEK-PS E325: p-A reaction + r,w e+e- decay M. Naruki et al. PRL 96, 092301 (2006) DMf / Mfvac= - 0.04 r/r0 DGf / Gfvac= 10 r/r0 • KEK-PS E325: p-A reaction + f e+e- decay R. Muto et al., NPA774 (2006) 723 • CBELSA/TAPS Col.: nuclear w photoproduction + wp0g decay D. Trnka et al., PRL 94, 192303 (2005) DMw < 0 ? • CBELSA/TAPS Col.: nuclear w photoproduction + A-dep. (nucl. transparency) M. Kotulla et al, PRL 100, 192302 (2008) Gw = 130-150 MeV at r0!! Gf >> Gfvac!! • LEPS Col: nuclear f photoproduction + f e+e- decay + A-dep.(transparency) T. Ishikawa et al., Phys. Lett. B608 (2005) 215 DMr≈ 0 !!

  4. K, K in hot, dense matter and f meson decay D. Cabrera, A. Ramos and L. Tolós

  5. KN and KN scattering in hot nuclear medium (I) S= -1: KN, pS, hL, KX (I=0); KN, pL, pS, hS, KX (I=1) S=+1:KN (I=0,1) KN: smooth at low energies, no S=1 resonances KN: strongly dominated by sub-thres.L(1405) Kaon and anti-kaon interactions with nucleons cPT + Unitarization in coupled channels for S-wave KN and KN scattering Kernel for a Bethe-Salpeter equation Lutz, Kolomeitsev Oset, Ramos, Tolos Oller, Meissner Hosaka, Jido … • Algebraic solution: T = [1-VG]-1V • Good description of l.e. scattering observables • L(1405)dynamically generated

  6. KN and KN scattering in hot nuclear medium (II) Pauli blocking Mean-field potentials pand K selfenergies L. Tolós, A. Ramos, A. Polls, PRC 65, 054907 (2002); L. Tolós, A. Ramos, T. Mizutani, PRC 77, 015207 (2003) s-w model at finite T and r, S, V potentials for N and Y(Machleidt 89, Tsushima 03) Lehmann rep. of retarded progagator at finite r and T: Imag. Time Formalism (ITF) bosonic Selfconsistent calculation of the S-wave selfenergy fermionic iWm→ P0+ie T = [1-VG]-1V, eff. interaction K, anti-K selfenergy and spectral function

  7. KN and KN scattering in hot nuclear medium (III) Higher waves: P-wave selfenergy • Lh,ShandS*h excitations S*=S* (1385) • Important source of f renormalization in a nuclear medium • KNY from l.o. c Lagrangian: 0+ meson and 1/2+ baryon octets Klingl, Waas and Weise 98; Oset and Ramos 01; Tolos, Ramos, Oset 06 Finite-T calculation: (ITF) • Pauli blocking on hyperons • Rel. baryon kinematics • Baryon potentials • Retarded property! i wn→ q0+ie (vanishes at q0=0 !)

  8. KN and KN scattering in hot nuclear medium (IV) Pion selfenergy in hot/dense medium: (pL, pS channels) M. Urban, M. Buballa, R. Rapp, J. Wambach, NPA 673 (2000) 357 • NN-1, DN-1, short range corr. (g’) • Rel. baryon kinematics • Energy-dependent D width! Finite-temperature Lindhard functions: Retarded selfenergy OK • p quasiparticle peak broadens • collective excitations mix with p mode • “melting” spectral function

  9. Results (I): KN in-medium S-wave scattering amplitude

  10. Results (II): K selfenergy and spectral function, S vs S+P P-wave YN-1

  11. Results(III): K spectral function, T and r dependence r0 2r0

  12. Results (IV): K spectral function, T and r dependence r0 2r0

  13. Results(V): K nuclear optical potential T = 100 MeV

  14. Results(VI): Kaon nuclear optical potential T = 100 MeV

  15. f meson selfenergy: vacuum case • Interested in the f to KK couplingmain f decay channel in vacuum, BR 85% J. Schechter et al. 1988 W. Weise et al. 1998 fKK Lagrangian in vector representation • Gives rise to a f selfenergy built from: • KK loop diagram • Kaon tadpole diagram

  16. f meson selfenergy: medium effects at finite T and r Vacuum width: Thermal width: few MeV enhancement (C. Gale, J.I. Kapusta 1991) Decay width at finite temperature and nuclear density: (FAIR conditions) “Stimulated” (Bose enhanced) decay Diffusion term (low energy) r meson: M. Urban et al. NPA 673 (2000) 357

  17. f meson selfenergy: nuclear matter results (T = 0) • Real part of f selfenergy: very small • f mass change: (-8) MeV at r=r0 • f width grows considerably with the density: • Gf30 MeV, r=r0 D. Cabrera, M.J.Vicente Vacas, Phys. Rev. C 67 045203 (2003) F. Klingl, T. Waas and W. Weise, Phys. Lett. B 431 (1998) 254; E. Oset and A. Ramos, Nucl. Phys. A 679 (2001) 616

  18. f decay width in dense and (moderately) hot matter • Finite-Tf widthduplicates at T = 100 MeV w.r.t. cold nuclear matter • Bose enhancement more effective for broad kaons (low energy modes) • Considerable broadening of f spectral function

  19. f decay width in dense and (moderately) hot matter Further contributions (higher temperatures, lower m :RHIC, LHC) • f→ KK, stimulated decay (Bose enhancement) • f interactions with the meson gas: f p→ K K* • (Anti-)Baryonic effects: (on the kaon cloud) S=+1 • KN → Y, KN → YM(finite rB) L. Alvarez-Ruso, V. Koch, PRC65 (2002); W. Smith, K. Haglin, PRC57 (1998) R. Rapp, PRC63 (2001) Kaons experience similar mechanisms as anti-Kaons Sizable enhancement of f reactivity (LimitmB→ 0 : Kaon and antikaon selfenergies symmetrize) D. Cabrera, A. Ramos, R. Rapp, L. Tolós, work in progress

  20. w meson selfenergy in nuclear matter D. Cabrera, R. Rapp

  21. Medium effects on intermediate mesons: • 3p: plenty of phase space • rp: not open at the physical r mass, only the low energyrtail is explored (E  500 MeV, p  200 MeV) r spectral function enhanced in this region at finite nuclear density (2p-cloud, r-N*h) w meson in the medium: theoretical approaches w properties in a selfenergy approach Gell-Mann, Sharp, Wagner rp decay is about 90% of G(w3p) (from f (w)  3p and radiative decays) P. Jain et al., Phys. Rev. D37 (1988) 3252; F. Klingl et al., Z. Phys. A356 (1996) 193

  22. Sizable increase of w decay width, DGV • Dispersion in results for DMV → ≈ (-200,+50) MeV something not well understood w meson in the medium: theoretical approaches In-medium mechanisms (hadronic many-body approach) • w meson-cloud interactions with the medium • wN  pN • wN  rN [pp]N • Chiral SU(3) Lagrangian approach • F. Klingl et al., Nucl. Phys. A624 (1997) 527; A650 (1999) 299 • F. Eichstaedt et al., arXiv:0704.0154 [nuc-th] • w coupling to several Rh (sub-thres.) states • N*(1520)D13, N*(1650)S11, ... • P. Muelich et al., Nucl. Phys. A780 (2006) 187 • M. Lutz et al Nucl. Phys. A706 (2002) 431 • Isovector-isoscalar mixing (s-w) • K. Saito et al, Phys. Lett. B433 (1998) 243; 460 (1999) 17 • Gy. Wolf et al., Nucl. Phys. A640 (1998) 129 • O. Teodorescu et al., Phys. Rev. C63 (2001) 034903 • A. Dutt-Mazumder, Nucl. Phys. A713 (2003) 119 • Self-consistent r and w spectral functions • F. Riek et al., Nucl. Phys. A740 (2004) 287

  23. VACUUM PHYSICS w meson in the medium: theoretical approaches w selfenergy from wN scattering: T-r approximation • Focus on building wN scattering amplitude (elastic+inelastic) • On-going discussion: non-rel. approximations • Pw: low density theorem →Pw(r) ≈ TwNr • F. Klingl et al. (1997,99); F. Eichstaedt et al. (2007) ImTwNCutkowsky rules ReTwNDispersion relation … (Figures borrowed from F. Eichstaedt, Ph.D. thesis) … • Pauli blocking on intermediate states • Dyson resummation of in-medium meson propagators! • Resonance contributions (N, D, N*…)?P. Muelich et al., NPA780 (2006) 187

  24. w meson in the medium: theoretical approaches w selfenergy from in-medium pr loop: density dependence D. Cabrera et al., Nucl. Phys. A705(2002) 90 As a consequence (w meson at rest): Clear non-linear dependence from very low densities…

  25. r-N*h: enhanced PS for w decay • p: very attracted (ph, Dh, g’) → r peak explored • 2p-cloud: reshuffling of strength in Sr • plus dynamics of wrp decay: q2cm Strong E dependence of Im Pw Re Pw w meson in the medium: theoretical approaches w selfenergy from in-medium pr loop: energy dependence w-N*h (not incl.) O(r2) terms IMPORTANT

  26. Conclusions • Kbar and Kselfenergy, spectral function and nuclear optical potentials in hot and dense matter: coupled-channel cU approach, (s+p)-wave interactions • Medium effects (full calculation in ITF): Pauli blocking; mean field baryonpotentials; p, K, Kbar selfenergies→ Selfconsistent evaluation • Temperature effects: • Kbar: further diss. of L(1405), low energy strength from YN-1 exct., decreased attraction, enhanced width • Kaon: broadened spectral function (phase space) • f meson: sizable medium (baryon density) effects from kaon cloud. Increased reactivity at finite temperatures (effective Bose enhancement, broader K, Kbar) • w meson: theoretical approaches (hadronic many-body) need review validity of some approximations →Tr • Full meson spectral functions (r, p) required, O(r2) effects important

  27. Backup slides

  28. Analyticity tests: Energy Weighted Sum Rules (EWSRs) A. Polls, A. Ramos, J. Ventura, S. Amari, W.H. Dickhoff,PRC49 (1994) • Lehmann representation(“Cauchy’s theorem in a smart way”) • Exploit information of meson selfenergy at E = 0 and at high energy … … D. Cabrera, A. Polls, A. Ramos, L. Tolós, work in progress

  29. s-w model (Walecka-type) at finite temperature from DBHF calculation of nuclear matter properties at T=0

  30. P-wave selfenergy: non-relativistic “naive” extension vs full relativistic thermal calculation in ITF

  31. S-wave selfenergy from T-matrix in Imaginary Time Formalism i wn→ q0+ie w≈ q0 + EN(p)

  32. w meson in the medium: theoretical approaches w selfenergy from wN scattering: T-r approximation p selfenergy r selfenergy

  33. w meson in the medium: theoretical approaches Some example where T-rdoes not work… • Kaon-nucleon and the L(1405) • KN repulsive at very low r→ rapidly turns attractive E. Oset and A. Ramos, Nucl. Phys. A 671 (2000) 481

  34. w meson in the medium: theoretical approaches Work in progress: (D. Cabrera + R. Rapp, in preparation) • All diagrams from • wN  pN • wN  rN [pp]N • Resonances in baryonic lines • Mass change: DPw = Pw(r) – Pw(r=0) r selfenergy p selfenergy some Vert. Corr. irreducible resummation F. Klingl et al. (1997,99); F. Eichstaedt et al. (2007) Things to consider: • Rescattering in wN (BS equation) • O(r2) effects are important Self-consistentG-matrix approach?

  35. M. Kotulla, nucl-ex/0609012 M. Kotulla, nucl-ex/0609012 M. Kaskulov et al. Eur. Phys. J. A31 (2007) 245 w and f mesons in the medium: experimental information • CBELSA/TAPS Col.: nuclear w photoproduction + wp0g decay D. Trnka et al., PRL 94, 192303 (2005) • p0g decay: much suppressed for r meson (10-2) no overlap • Sizable enhancement of spectrum below Mw • Effect vanishes when increasing pw cuts • Width dominated by exp. resolution (Gw < 55 MeV at estimated r = 0.6r0) • - BUU transport with DMw = -16% at r0 • P. Mühlich et al., Eur. Phys. J. A20 (2004) 499 • Monte Carlo simulation (gA →p0gX) with rescaled bckgnd from elem. reaction • M. Kaskulov et al., Eur. Phys. J. A31(2007) 245

  36. w and f mesons in the medium: experimental information • KEK-PS E325: p-A reaction + w e+e- decay M. Naruki et al. PRL 96, 092301 (2006) • Yield excess below r, w mass: MV(r)/MV = 1 – k r/r0, k ≈ 0.10from fit • (k = 0.10-0.22, Hatsuda, Lee, Shiomi ‘95) • No broadening is assumed • Actually, broadening is NOT favoured in the analysis!!

  37. w and f mesons in the medium: experimental information • KEK-PS E325: p-A reaction + f e+e- decay R. Muto et al., NPA774 (2006) 723 DMf / Mfvac= - 0.04 r/r0 DGf / Gfvac= 10 r/r0 Recent analysis: G*K+K- / GvacK+K- = 1 + ar/r0 a = 1.4 ± 1.1 ± 2.1 F.Sakuma et al. PRL 98 (2007) 152302 bg<1.25 (Slow) R. Muto, QM 2005

  38. w and f mesons in the medium: experimental information C. Djalali et al., Int.J.Mod.Phys.A22:380-387,2007 • CLAS-g7 Col.: g-A reaction + r e+e- decay CONCLUSION: k = 0.2 ± 0.2 Waiting for w and f results… No mass modification Mass modification a la HL, k = 0.16

  39. Problems: • Long f lifetime:f decays outside the nuclear medium • f is produced with high Pf • Kinematical cuts to isolate small-Pf events poor statistics • Distortion in K+K- distribution (Coulomb interaction may bind K-in nucleus) Experimental information on f properties in the nuclear medium • Results from p-A reaction: KEK-PS E325, K. Ozawa et al., Nucl. Phys. A 698 (2002) 535c • HIC’s 28Si + 196Au: BNL-AGS E802, Y. Akiba et al., Phys. Rev. Lett. 96 (1996) 2021 • Au + Au: PHENIX Col., Adler et al., nucl-ex/0410012 • gAK+K-X: LEPS, T. Ishikawa et al., Phys. Lett. B608 (2005) 215 Medium effects on the mass or decay width of the f meson are difficult to observe P. Muhlich, T. Falter, C. Greiner, J. Lehr, M. Post and U. Mosel, Phys. Rev. C 67 (2003) 024605

More Related