slide1
Download
Skip this Video
Download Presentation
Problems with the  CDM Model

Loading in 2 Seconds...

play fullscreen
1 / 22

Problems with the  CDM Model - PowerPoint PPT Presentation


  • 97 Views
  • Uploaded on

Galaxy formation from the IIB Superstring with Fluxes Tonatiuh Matos http:/www.fis.cinvestav.mx/~tmatos. Problems with the  CDM Model. Dark Energy: Extreme fine tuning for  Coincidence Dark Matter: Cuspy central density profiles Too much substructure Too late galaxy formation

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Problems with the  CDM Model' - dixie


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1
Galaxy formation from the IIB Superstring with FluxesTonatiuh Matoshttp:/www.fis.cinvestav.mx/~tmatos
problems with the cdm model
Problems with the CDM Model
  • Dark Energy:
  • Extreme fine tuning for 
  • Coincidence
  • Dark Matter:
  • Cuspy central density profiles
  • Too much substructure
  • Too late galaxy formation
  • Too early metalicity formation
  • Etc.
some alternatives
Some Alternatives
  • Self-Interacting DM
  • Warm DM
  • Super Heavy DM
  • Self-Annihilating DM
  • Repulsive DM
  • Fuzzy DM
  • Decaying DM
  • Scalar Field Dark Matter
  • V = V0 (cosh()-1)
cosmology from superstrings theory
Cosmology from Superstrings Theory
  • R. Kallosh
  • R. Brandenberger
  • D. Wands, etc.
cosmology from superstrings theory1
Cosmology from Superstrings Theory
  • R. Kallosh
  • R. Brandenberger
bose einstein condensate
Bose-Einstein Condensate

 + dV/d = 0

  • V = V0[cosh() – 1]
bose einstein condensates
Bose-Einstein Condensates
  • Tc TeV
  • m < 10-17 eV
  • Mcrit 0.1 M2Planck /m
slide10
Scalar Field Fluctuation = HaloTonatiuh Matos and F. Siddhartha GuzmanClass. Q. Grav. 17(2000)L9; Tonatiuh Matos, F. Siddhartha Guzman and Dario Nuñez, Phys. Rev. D62(2000)061301(R);Tonatiuh Matos and F. Siddhartha Guzman,Class.Q. Grav. 18(2001)5055
  • M  0.1 M2Planck /m
  • If m  10-23 eV
  • M 1012 Mo
the model t matos r luevano h h garcia compean
The ModelT. Matos, R. Luevano, H. H. Garcia Compean.
  • Inflation
  • hin
  • V = V0[cosh() – 1] +Axion
  •  exp() F2
omegas1
Omegas

exp()zoom

density profiles1
Density Profiles

LSB Galaxies

density profiles2
Density Profiles

LSB Galaxies

summarizing
Summarizing
  • The IIB Superstring model:
  • Behaves as CDM after recombination.
  • Reproduces all the successes CDM above galactic scales.
  • Predicts a sharp cut-off in the mass power spectrum
  • The favored values for the two free parameters
  •  20 V0 (310-27 Mpl )4  m 10-23 eV
conclusions
Conclusions
  • The differences between IIB superstrings and CDM:
  • 1) Recombination
  • 2) Center of the Galaxies
conclusion
Conclusion
  • The Dilaton could be a good candidate to be the Dark Matter of the Universe
ad