420 likes | 562 Views
SAMPLE COVARIANCE BASED PARAMETER ESTIMATION FOR DIGITAL COMMUNICATIONS. Javier Villares Piera Advisor: Gregori Vázquez Grau Signal Processing for Communications Group Dept. of Signal Processing and Communications Technical University of Catalunya (UPC). OUTLINE. INTRODUCTION
E N D
SAMPLE COVARIANCE BASED PARAMETER ESTIMATION FOR DIGITAL COMMUNICATIONS Javier Villares Piera Advisor: Gregori Vázquez Grau Signal Processing for Communications Group Dept. of Signal Processing and Communications Technical University of Catalunya (UPC)
OUTLINE • INTRODUCTION • OPTIMAL SECOND-ORDER ESTIMATION • LARGE-ERROR • SMALL-ERROR • QUADRATIC EXTENDED KALMAN FILTER • SOME ASYMPTOTIC RESULTS • CONCLUSIONS
OUTLINE • INTRODUCTION • OPTIMAL SECOND-ORDER ESTIMATION • LARGE-ERROR • SMALL-ERROR • QUADRATIC EXTENDED KALMAN FILTER • SOME ASYMPTOTIC RESULTS • CONCLUSIONS
PROBLEM STATEMENT PARAMETERS OBSERVATION ADDITIVE GAUSSIAN NOISE MULTIPLICATIVE NON-GAUSSIAN NOISE ESTIMATE FROM KNOWING STATISTICS ON AND THE PARAMETERIZATION OF THE PROBLEM
ESTIMATION PERFORMANCE SELF-NOISE DEPENDS ON AND MEASUREMENT NOISE ESTIMATION ERROR DETERMINISTIC CASE : LIKELIHOOD
ESTIMATION PERFORMANCE SELF-NOISE DEPENDS ON AND MEASUREMENT NOISE ESTIMATION ERROR BAYESIAN CASE : LIKELIHOOD PRIOR
CLASSICAL ESTIMATION CRITERIA • MMSE: • MVU: • ML: GENERALLY, NOT REALIZABLE !! DIFFICULT !! OPTIMALITY : ML MVU MMSE small-error small-error
SMALL-ERROR VS. LARGE-ERROR THRESHOLD ML OBSERVATION LENGTH INCREASES CRB SNR LARGE-ERROR SMALL-ERROR BAYESIAN ESTIMATORS DETERMINISTIC ESTIMATORS (ML = MVU = MMSE CRB)
ESTIMATION WITH NUISANCE UNKNOWNS NUISANCE PARAMETERS ? UNCONDITIONAL LIKELIHOOD CONDITIONAL LIKELIHOOD • CML x CONTINUOUS, • DETERMINISTIC • Low-SNR UML • GML • x GAUSSIAN
ESTIMATION WITH NUISANCE UNKNOWNS NUISANCE PARAMETERS ? UNCONDITIONAL LIKELIHOOD CONDITIONAL LIKELIHOOD QUADRATIC • CML x CONTINUOUS, • DETERMINISTIC • Low-SNR UML • GML • x GAUSSIAN
QUADRATIC ML-BASED ESTIMATORS COMPARISON CML GML MCRB (x known) Low-SNR UML Higher -order
GAUSSIAN ASSUMPTION IN COMMUNICATIONS ? -1 1 -1 1 BPSK alphabet (higher-order info) Gaussian assumption (mean and variance info)
OUTLINE • INTRODUCTION • OPTIMAL SECOND-ORDER ESTIMATION • LARGE-ERROR • SMALL-ERROR • QUADRATIC EXTENDED KALMAN FILTER • SOME ASYMPTOTIC RESULTS • CONCLUSIONS
SECOND-ORDER ESTIMATOR ESTIMATOR COEFFICIENTS ? WITH SAMPLE COVARIANCE VECTOR
ESTIMATOR OPTIMIZATION • OPTIMUM b: • OPTIMUM M: TRADE-OFF 1) 2) 3) MMSE MVU MVMB
M OPTIMIZATION: GEOMETRIC INTERPRETATION (min MSE) MMSE MVMB (min VAR) (min BIAS2)
BIAS MINIMIZATION UNBIASED • SIMULATION PARAMETERS • FREQ. ESTIMATION • 2 MSK SYMBOLS • NSS = 2 Max. Freq. Error = 1 Max. Freq. Error = 0.5
VARIANCE ANALYSIS WITH COVARIANCE MATRIX OF FOURTH-ORDER MOMENTS OF y
MATRIX Q() NON-GAUSSIAN INFORMATION WITH IF x GAUSSIAN !! 4TH ORDER CUMULANTS (KURTOSIS MATRIX)
KURTOSIS MATRIX IF x IS CIRCULAR WITH M-PSK 16-QAM 4TH TO 2ND ORDER RATIO 64-QAM GAUSSIAN
QUADRATIC ESTIMATORS COMPARISON MVMB • SIMULATION PARAMETERS • FREQ. ESTIMATION • UNIFORM PRIOR (80% Nyq) • 4 MSK SYMBOLS • NSS= 2 Prior variance MMSE Self-noise min{BIAS2}
ASYMPTOTIC ANALYSIS • SIMULATION PARAMETERS • FREQ. ESTIMATION • UNIFORM PRIOR (80% Nyq) • Es/No = 40dB • MSK modulation • NSS = 2 MVMB MMSE (# of samples)
OUTLINE • INTRODUCTION • OPTIMAL SECOND-ORDER ESTIMATION • LARGE-ERROR • SMALL-ERROR • QUADRATIC EXTENDED KALMAN FILTER • SOME ASYMPTOTIC RESULTS • CONCLUSIONS
LARGE-ERROR SMALL-ERROR NOT INFORMATIVE VERY INFORMATIVE DELTA MEASURE
CLOSED-LOOP ESTIMATION AND TRACKING DISCRIMINATOR or DETECTOR LOOP FILTER SMALL-ERROR (STEADY-STATE)
BIAS MINIMIZATION (SMALL-ERROR) UNBIASED
BEST QUADRATIC UNBIASED ESTIMATOR (BQUE) AND WE OBTAIN THAT 2nd-ORDER FIM LOWER BOUND ON THE VARIANCE OF ANY SECOND-ORDER UNBIASED ESTIMATOR
FREQUENCY ESTIMATION PROBLEM • 2REC MODULATION • M=8 OBSERVATIONS (NSS=2) • K=12 NUISANCE PARAM. • 2REC MODULATION • M=16 OBSERVATIONS (NSS=4) • K=12 NUISANCE PARAM.
CHANNEL ESTIMATION PROBLEM • SIMULATION PARAMETERS • CIR LENGTH 3 SYMB • 100 GAUSSIAN CHANNELS • ROLL-OFF = 0.35 • NSS = 3 • OBS. TIME = 100 SYMB. CONSTANT MODULUS
ANGLE-OF-ARRIVAL ESTIMATION PROBLEM SEPARATION 10º SEPARATION 1º • M-PSK MODULATION • 4 ANTENNA • OBS. TIME = 400 SYMB • M-PSK MODULATION • 4 ANTENNA • OBS. TIME 3000 SYMB
OUTLINE • INTRODUCTION • OPTIMAL SECOND-ORDER ESTIMATION • LARGE-ERROR • SMALL-ERROR • QUADRATIC EXTENDED KALMAN FILTER • SOME ASYMPTOTIC RESULTS • CONCLUSIONS
KALMAN FILTER MOTIVATION CLOSED-LOOP ESTIMATOR - OPTIMUM IN THE STEADY-STATE (SMALL-ERROR) KALMAN FILTER - OPTIMUM IN THE STEADY-STATE (SMALL-ERROR) - OPTIMUM IN ACQUISITION (LARGE-ERROR) MVU BAYESIAN MMSE MEASUREMENT EQUATION LINEAR GAUSSIAN STATE EQUATION LINEAR GAUSSIAN
KALMAN FILTER FORMULATION MEASUREMENT EQUATION ZERO-MEAN NONLINEAR IN STATE EQUATION NONLINEAR IN ZERO-MEAN PROBLEM QUADRATIC OBSERVATION SAMPLE COV. VECTOR - NON-GAUSSIAN - DEPENDS ON NONLINEAR PROBLEM LINEARIZATION (EKF FORMULATION)
ACQUSITION RESULTS • SIMULATION PARAMETERS • M-PSK MODULATION • SNR = 40 dB • 4 ANTENNAS SEPARATION = 0.2 SEPARATION = 0.4
OUTLINE • INTRODUCTION • OPTIMAL SECOND-ORDER ESTIMATION • LARGE-ERROR • SMALL-ERROR • QUADRATIC EXTENDED KALMAN FILTER • SOME ASYMPTOTIC RESULTS • CONCLUSIONS
LOW AND HIGH SNR STUDY: DOA 16-QAM (MULTILEVEL) M-PSK (CONSTANT MODULUS) • SEPARATION 1º • M = 4 ANTENNAS • SMALL-ERROR • SEPARATION 1º • M = 4 ANTENNAS • SMALL-ERROR
LARGE SAMPLE STUDY: DIGITAL COMMUNICATIONS FREQUENCY SYNCHRO. TIMING SYNCHRO. • M-PSK • NSS = 2 • ROLL-OFF = 0.75 • M-PSK • NSS = 2 • ROLL-OFF = 0.75
LARGE SAMPLE RESULTS: DOA SEPARATION 10º SEPARATION 1º • M = 4 ANTENNAS • SMALL-ERROR • M = 4 ANTENNAS • SMALL-ERROR
LARGE SAMPLE RESULTS: DOA SEPARATION 10º SEPARATION 1º • M-PSK ( = 1) • EsNo = 60dB • SMALL-ERROR • M-PSK ( = 1) • EsNo = 60dB • SMALL-ERROR
OUTLINE • INTRODUCTION • OPTIMAL SECOND-ORDER ESTIMATION • LARGE-ERROR • SMALL-ERROR • QUADRATIC EXTENDED KALMAN FILTER • SOME ASYMPTOTIC RESULTS • CONCLUSIONS
CONCLUSIONS • IN SECOND-ORDER ESTIMATION, THE GAUSSIAN ASSUMPTION DOES NOT APPLY FOR • MEDIUM SNR • HIGH SNR WITH CONSTANT MODULUS NUISANCE UNKNOWNS, • IF THE OBSERVED VECTOR IS SHORT IN THE PARAMETER DIMENSION (DOA vs. FREQ.) • IN THAT CASE, SECOND-ORDER ESTIMATORS CAN EXPLOIT THE • 4TH ORDER INFO. ON THE NUISANCE PARAMETERS • KURTOSIS MATRIX K
FURTHER RESEARCH • IN MULTIUSER ESTIMATION PROBLEMS… • CONSTANT MODULUS PROPERTY • STATISTICAL DEPENDENCE IN CODED TRANSMISSIONS • ACQUISITION OPTIMIZATION • ESTIMATION AND DETECTION THEORY CONNECTION