370 likes | 481 Views
Resistência dos Materiais. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial. Resistência dos Materiais. CAPITULO 3 Esforços Internos e Método das Secções. Resistência dos Materiais. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial.
E N D
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais CAPITULO 3 Esforços Internos e Método das Secções
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Sumário: Classificação dos Esforços Internos e Método das Secções • Esforço interno normal • Esforço interno cortante • Esforço interno flexão • Esforço interno torção • Método dos Nós • Método das Secções Competências:No final do capítulo os alunos deverão ser capazes de identificar os esforços internos numa secção do corpo em função do tipo de carregamento. Aplicar os métodos dos nós e das secções a um corpo deformável de modo a determinar os esforços internos devidos a um determinado carregamento.
Resistência dos Materiais Tracção Compressão Corte Flexão Torção DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Esforços Internos - Introdução As solicitações aplicáveis a um corpo podem ser classificadas em solicitações simples ou compostas. Nas primeiras incluem-se os esforços do tipo tracção, compressão, corte, torção e flexão que produzem esforços unidimensionais. A área das solicitações compostas é formada por combinação de esforços simples e conduzem a estados de tensão duplos ou triplos.
Resistência dos Materiais Esforços flexão Esforço cortante Esforço normal Esforço normal Esforço torção Esforço flexão Esforços cortantes DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Classificação dos Esforços Internos e Método das Secções O projecto de qualquer elemento estrutural ou mecânico requer uma investigação das cargas actuantes no seu interior de modo a garantir que o material do qual é feito possa resistir à carga imposta. Esses esforços internos podem ser determinados através da utilização do método das secções.
Resistência dos Materiais Forças externas V M Momentos N T DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Método das Secções O método das secções é utilizado para determinar as resultantes dos esforços internos. Procedimento de análise: • Determinar as forças reactivas nos apoios. • Manter todas as forças, momentos e cargas distribuídas sobre o corpo. - Passar uma linha imaginária pelo ponto do corpo onde os esforços internos devem ser determinados. - Construir o diagrama de corpo livre de uma das partes seccionadas e indicar as incógnitas N, V, M e T. - Aplicar as equações de equilíbrio.
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Método das Secções - Exemplo de aplicação a uma viga Método das Secções - Exemplo de aplicação a uma treliça
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício Resolvido 1 -Uma barra é fixa através de uma das da suas extremidades e carregada conforme mostrado na figura 1-(a). Determine os esforços internos normais nos pontos B e C. Reacções nos apoios:O diagrama de corpo livre da barra é mostrado na figura 1-(b). Diagrama de corpo livre: Os esforços internos em B e C são obtidos utilizando os diagramas de corpo livre da barra seccionada mostrados na figura 1-(c). São escolhidas as partes AB e DC por terem uma menor quantidade de forças aplicadas. Equações de equilíbrio: Parte AB: Figura 1 Parte DC:
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício Resolvido 2 - Um eixo circular está sujeito ao carregamento indicado na figura 2-(a). Determine os esforços de torção internos nos pontos B e C. Reacções nos apoios:O diagrama de corpo livre do eixo é mostrado na figura 2-(b). Diagrama de corpo livre: Os esforços internos em B e C são obtidos utilizando os diagramas de corpo livre do eixo seccionado mostrados na figura 1-(c). São escolhidos os segmentos AB e CD por terem uma menor quantidade de forças aplicadas. Equações de equilíbrio: Parte AB: Parte CD: Figura 2
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício Resolvido 3 - Uma viga suporta o carregamento mostrado na figura 3-(a). Determine os esforços internos actuantes nas secções transversais que passam pelos pontos B e C da viga. Reacções nos apoios:O diagrama de corpo livre da viga é mostrado na figura 3-(b). Diagrama de corpo livre: Os esforços internos em B e C são obtidos utilizando os diagramas de corpo livre da viga seccionada mostrados na figura 1-(c) e 1-(d). São escolhidos os segmentos AB e AC por terem uma menor quantidade de forças aplicadas. Equações de equilíbrio: Segmento AB: Segmento AC: Figura 3
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício Resolvido 4 - Determine os esforços internos que actuam no ponto E da estrutura carregada conforme indicado na figura 4-(a). Reacções nos apoios:Análise do equilíbrio no pino C tal como indicado na figura 4-(b). Diagrama de corpo livre: Os esforços internos em E são obtidos utilizando o diagramas de corpo livre do segmento CE mostrado na figura 4-(c). Equações de equilíbrio: Figura 4
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício Resolvido 5 - O painel sinalizador mostrado na figura 5-(a) tem uma massa de 650 kg e é suportado por uma coluna fixa. As normas de projecto indicam que o carregamento uniforme máximo esperado por acção do vento, que ocorre na área onde o painel está localizado, é de 900 Pa. Determine os esforços internos gerados em A por acção deste carregamento. Figura 5 Diagrama de corpo livre: O modelo idealizado para o sistema é mostrado na figura 5-(b). Nesta figura são indicadas as dimensões necessárias para a resolução do problema. Pode-se considerar o diagrama de corpo livre da parte acima do ponto A, indicado na figura 5-(c), pois desta forma não se envolvem as reacções no apoio.
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Equações de equilíbrio: Uma vez que o problema é tridimensional, será efectuada uma análise vectorial. P Esforços internos no ponto A: Esforço normal: Esforços de flexão: Esforço cortante: Esforço de torção:
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 1 - Para o carregamento indicado e considerando que a coluna tem uma massa de 200 kg/m, determine os esforços internos que actuam na secção transversal que passa pelo ponto A.
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 2 - Para o carregamento indicado e considerando que os apoios A e B permitem ao eixo girar livremente, determine os esforços internos que actuam nas secções transversais que passam pelos pontos C e D.
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 3 - Para o carregamento indicado, determine os esforços internos que actuam nas secções transversais que passam pelos pontos C e D.
Resistência dos Materiais 670 N 0,3 m 0,9 m 2,4 m 1,2 m DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 4 - Determine os esforços internos resultantes que actuam nas secções transversais que passam pelos pontos D e E.
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 5 - Determine os esforços internos resultantes que actuam na secção transversal que passa pelo ponto B.
Resistência dos Materiais nó nó elemento sujeito a duas forças B A C DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Análise de Estruturas - Treliças • Uma treliça é uma estrutura composta por elementos rectos unidos em nós, localizados nas extremidades de cada elemento. • Os elementos são delgados e incapazes de suportar cargas transversais. • Todas as cargas devem ser aplicadas nas junções. • Uma treliça deve ser assumida como uma estrutura composta por nós e elementos sujeitos a duas forças. • Uma treliça rígida não deve sofrer grandes deformações ou entrar em colapso sob acção de pequenas cargas. • Uma treliça triangular composta por três elementos e três nós pode ser considerada uma treliça rígida.
D Resistência dos Materiais B A C DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Treliças Simples • Uma treliça obtida pela adição de dois novos elementos à treliça básica triangular, ligados entre si por um novo nó (D), continuará a ser rígida. • Treliças obtidas repetindo este procedimento são camadas de treliças simples. • O número total de elementos ém = 2n - 3, onde n é o número total de nós.
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Tipos de Treliças em Aço
Resistência dos Materiais P1 P3 P2 n G B D A C E n DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Análise de Treliças • Métodos analíticos (método dos nós e das secções) Fase 1– diagrama do corpo livre; Fase 2– cálculo das reacções; Fase 3– utilização de um dos métodos; Fase 4– estado final dos elementos da treliça. • Condição necessária mas não suficiente para uma treliça rígida, completamente restringida e estaticamente determinada: • m + r = 2n • m – número de elementos; • r – número de reacções nos apoios desconhecidas; • n– número de nós.
Y D Resistência dos Materiais P E P P DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial L/2 RAx B A C X L/2 L/2 RC RAy Método dos Nós • 1º Determinação das reacções RAx=-P N RAy=P/2 N RC=3/2P N • 2º Equilíbrio num ponto (nó) Estruturas 2D Estruturas 3D
FAD Resistência dos Materiais P DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial FAB P/2 Método dos Nós (Escolha do nó) Pergunta: Qual o primeiro nó onde se deve aplicar o equilíbrio num ponto? Resposta: O nó que apresente o mesmo número de incógnitas e equações. Equilíbrio no ponto A: Estado dos elementos: AD em compressão e AB em tracção.
Resistência dos Materiais P1 P1 P2 P3 P2 n FBD B G B D A A FBE E C C E FCE n DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Método das Secções O método das secções é habitualmente preferido em relação ao método dos nós quando apenas se deseja determinar a força num dos elementos da treliça (ou num número reduzido de elementos). Para determinar a força no elemento BD da treliça mostrada, secciona-se através dos membros BD, BE e CE, removem-se esses membros e estuda-se a porção ABC da treliça como um corpo livre. Nota: O método deve ser utilizado de modo a obter no máximo três forças desconhecidas, ou seja, cortar no máximo três elementos. Assim, pode ser utilizado igual número de equações de equilíbrio para resolver o problema.
Y D Resistência dos Materiais P E P P FED RAx FBD FBA RAy DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial L/2 RAx B A C X RC RAy L/2 L/2 Método das Secções • 1º Determinação das reacções RAx=-P N RAy=P/2 N RC=3/2P N • 2º Equilíbrio de uma das partes da treliça seccionada
elemento estado 0 Resistência dos Materiais DE nenhum E DB compressão D AB tracção DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial RAx 0,56P B A RAy 1,25P Método das Secções • 3º Determinação do estado dos elementos
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício Resolvido (Método dos Nós) - Determine as forças nos elementos FG, EG e GD da treliça simples.
Resistência dos Materiais EI DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício Resolvido (Método das Secções) - Determine as forças nos elementos DE, DI e EI da treliça simples.
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Análise de Treliças - Conclusão Método dos nós – normalmente mais eficiente para a determinação da capacidade de carga em todos os elementos da treliça. Método das secções – normalmente mais eficiente para a determinação do estado particular de um elemento da treliça.
Resistência dos Materiais 12.5 kN 12.5 kN 12.5 kN 12.5 kN 2 m 2 m 2 m A C B D 2.5 m G F E DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 1 - Utilizando o método dos nós, determine a força em cada elemento da treliça mostrada.
Resistência dos Materiais 3 kN 3 kN 3 kN F 3 kN 3 kN D H 6.75 m 1.5 kN 1.5 kN B J L A I C E G K 3 m 3 m 3 m 3 m 3 m 3 m DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 2 - Utilizando o método das secções, determine a força nos elementos FH, FI e GI da treliça Pratt representada.
Resistência dos Materiais 35 kN 50 kN 1 m 2 m 1 m N2=15 kN N1=15 kN N [kN] x s2= 47.75MPa s [MPa] s1=7.64 MPa s1=7.64 MPa N3= -35 kN x s3=-111.4 MPa DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial • Exercício 3: A barra de aço AB (E1 = 210 GPa) com diâmetro d0 = 50 mm e as barras maciças em liga de alumínio BC (E2 = 70 GPa) e latão CD (E3 = 105 GPa), ambas com diâmetro d = 20 mm, formam o sistema composto por três segmentos representado na figura. determine: • a) o diagrama de esforços internos normais; • b) as tensões normais máximas em cada um dos segmentos;
Resistência dos Materiais m = 500 kg 12 kN DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial 8 kN/m D C 2 m 1m 1 m y z Exercício 4: Considere uma viga com geometria de secção transversal representada na figura . Para o carregamento indicado: a) Determine as reacções nos apoios A e B. b) Construa os diagramas de esforços cortantes e de momentos flectores. Capitulo 5 - Página 297
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 5 – Um painel de propaganda é suportado por uma treliça, tal como representado na figura, e encontra-se submetido a uma carga horizontal provocada pelo vento de 4 kN. A análise isolada do painel mostra que 5/8 desta carga é suportada no ponto central C e o restante dividido igualmente entre D e B. Calcule as forças nas barras BE e BC. (Solução: BE=2,8 kN T; BC=1,5 kN T)
Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Apêndice - Trigonometria