1 / 22

胡明 Ming Hu 运行规划 ( Operation Planning) 系统运行及可靠性 (O & R) 阿尔伯塔省电力运行机构 (AESO)

风电并网对系统运行的影响和对策 Integration of Wind Power into Power Systems and Market Operations – Impact & Solution. 胡明 Ming Hu 运行规划 ( Operation Planning) 系统运行及可靠性 (O & R) 阿尔伯塔省电力运行机构 (AESO). 阿尔伯塔省电力工业概况 Alberta’s Electric Industry. 最大负荷 (Peak load) : 9,775 MW 年负荷系数 ( annual load factor ) : 80%

denis
Download Presentation

胡明 Ming Hu 运行规划 ( Operation Planning) 系统运行及可靠性 (O & R) 阿尔伯塔省电力运行机构 (AESO)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 风电并网对系统运行的影响和对策Integration of Wind Power into Power Systems and Market Operations – Impact & Solution 胡明 Ming Hu 运行规划 (Operation Planning) 系统运行及可靠性 (O & R) 阿尔伯塔省电力运行机构 (AESO)

  2. 阿尔伯塔省电力工业概况Alberta’s Electric Industry • 最大负荷 (Peak load):9,775 MW • 年负荷系数 (annual load factor):80% • 装机容量 (Installed Capacity):12,368 MW • > 280台发电机组 (generating units) • ~200电力交易商 (Wholesale market participants) • > 21,000 km 输电线 (Transmission line) • 2对外联络线 (Interties):与BC省780MW;与 Sask.省 150 MW 风电 Wind523 MW 煤电 Coal 5,893 MW 其它 Other214 MW 燃气电厂 Gas 4,895MW BC 水电 869MW Alta. Sask. > 11,000 MW 风电项目意向 (Wind power Interest) 主要风电项目 开发地区 (Primary region) 300 KM

  3. 风电大规模并网对系统运行带来的挑战The System Operation Challenge of Large-Scale Wind Power Integration • 如何应对风电出力变化和不确定性 How to handle the variability and uncertainty in System Operation • 理解风电出力的变化规律 (风电出力变化研究) Understand the wind power variability (Wind power variability study) • 理解风电出力的不确定性 (风电出力预测试点项目) Understand wind power uncertainty (Wind power forecast pilot project) • 理解和评估对系统运行的影响 (系统影响分析, 1) Understand and assess the potential impact on system operation (System Impact study, phase-1) • 评估潜在的系统应对措施及手段 (系统影响分析, 2) Assess potential mitigation solutions (System Impact study, phase-2) • 应对措施的实施 (发展风电的市场及运行框架) Solutions implementation (Market & Operation Framework)

  4. 理解风电出力的不稳定性Understand the wind power variability • AESO 和风电行业合作,完成了 “阿尔伯塔风电出力变化研究” AESO work with wind industry, contracted GENIVAR (Phoenix Engineering) to conduct “Alberta wind power variability study” • 研究结果提供了2004年风电出力全年每分钟的仿真结果/ Provided simulated minute-to-minute wind power data for the whole year (2004) • 基于2004年气候测量数据,未来风电发站方案及风电场模型/ Based on measured meteorology data across southern Alberta of potential future wind farms and wind power production simulation model • 4个未来风电发站方案/ For 4 scenarios (~250MW, ~900MW, ~1500MW and ~2000MW) 250MW为2004年已有规模,用于模型验证 /The 250MW was the existing wind power scenario, for the purpose of wind power production simulation model validation • 为下一步的 “风电的系统影响”提供必要的基础和数据/ The data was required and used later for AESO “Wind power system Impact studies” • 研究的主要结论: 风电出力的不稳定随着发展规模的增加而增大, 但由于分布的分散互补性,并非按比例增大。 / A key conclusion of this study: The wind power variability does increase with the wind power development level, but not proportionally due to diversification

  5. 理解风电出力的不稳定性(2) – 分散互补性 Understand the Variability of Wind Power (2) – Diversification • 不同分布的风电场出力不稳定性的叠加 – 分散互补的影响 The combined variability of different wind farms – Diversification impact • 不同分布的风电场出力不稳定性的叠加不是简单的算术叠加,而是向量叠加,向量的方向取决于不同风电场的相关情况。 The combined variability (random nature) is the vector-sum of each individual variability other than simple-sum • 完全正相关 相互独立 完全反相关 positive correlate independent negative correlate • 空间分散 / 时间互补(Diversification: Space / Time) • 对短时出力变化互补明显平滑效应/ moresmoothing effectfor short-term variability • 对长期出力变化互补性减低接力效应(持续增减) / lesssmoothing effectand morerelay effectfor long-term variability (Ramping issue) • 取决于风场的位置分布和风向/ Also related with location distribution of wind farms and wind directions

  6. 试点三种不同的预测方法 ,为期1年 / Trial three very different forecasting methods over a one year period: AWS Truewind (US) WEPROG (Denmark) Energy and Meteo (Germany) 分别针对4个不同地理气候条件的地区 4 different geographic terrains / wind regimes in Alberta 每小时提供未来1-48小时的平均风速,矗立及变化 / T-1 to T-48 hours forecasted refreshed hourly (w/s, MWs, ramp rate) 7个现有风场,5个未来风场 / 7 existing and 5 future facilities to represent geographic diversity and future expansion 统一的风场气象数据收集 / On-site Met Data Collection by GENIVAR 独立的结果分析 / Independent analytical analysis from ORTECH Power 理解风电出力的不确定性 – 风电出力预测试点项目Understand the Uncertainty of Wind Power (1) - Forecasting Pilot Project Funded by Alberta Electric System Operator Alberta Energy Research Institute Alberta Department Of Energy

  7. 理解风电出力的不确定性 (2) – 预测误差实例Understand the Uncertainty of Wind Power (2) - forecast error example 误报 False Alarm 时间误差 Phase Error 漏报 Miss 变化率误差 Ramp Rate

  8. 理解风电的不确定性 (3) Understand the Uncertainty of Wind Power - (3) • 不确定性不等同于变化/ Uncertainty is different than Variability • 不确定性只是无法预测的变化-预测误差 Uncertainty is only the unpredictable variability – forecast error • 风电出力预测的相对误差高于负荷预测/ The relative degree of uncertainty of wind power is bigger than load based on today’s forecast capability • 1日前预测: 负荷一般1-3%,风电 >10% (100%????) Day-ahead forecast: ~1-3% error for load vs. >10% for wind power • 准确预测风电出力变化有难度/ The prediction of wind power ramping is challenging • 常用的预测误差指标,例如: 平均|%误差|、方差等不适用/ The standard accuracy metrics used to describe forecast performance may not be applicable or meaningful to system operations, such as MAPE, RMSE because they can suppress ramping signals • 需要制定新的预测误差指标,能够全面反映幅值、相位、误报、漏报及变化趋势误差 / Need some accuracy metrics that can describe not only magnitude error, but also phase error, false-alarm rate, capture-rate, ramping rate error • AESO制定了基于出力变化事件的幅值/相位误差图 AESO developed an changing-event-based magnitude/phase accuracy chart to assess and understand wind power forecast capability

  9. 理解风电出力变化及不确定对系统运行的影响Understand and Assess the System Impact of Wind Power Variability and Uncertainty (1) • 系统的关键是要维持实时的系统供需平衡 / System operation involves maintaining a constant balance between supply and demand • 包括4个重要环节 / Four key aspects to achieving system balance • 预测维持系统供需平衡的平衡能力/ Ability to forecast the balancing requirement • 保证充足的系统资源 / Adequate system resources for this requirement • 容量,备用及调节控制能力 / Supply sources (generation) and control sources (ancillary services) • 相应的运行规程 / Operating policies and procedures • 实时的运行决策 / Real-time operating decisions • 风电出力变化及不确定对以上4个环节均有影响 / The variability and uncertainty of wind power may impact all of the above aspects • 2种分析方法:理论分析,仿真分析  Two ways to analyze impact: statistical and simulation

  10. 系统影响分析方法 / System Impact Analysis Framework 输电能力越限 OTCViolation 运行预测 Operation Forecasting • 潮流交换 • 发电调度 • 备用调度 • Interchange scheduling • Energy market dispatch • Ancillary services 负荷变化及不确定 Loadvariability &uncertainties 系统整体变化 及不确定 System Overall variability & uncertainties 非计划潮流 Unscheduled Interchange 风电变化及不确定 Wind Power variability & uncertainties 区域控制误差 ACE 各种运行规程 Operating policies & procedures 其它变化及不确定 Othervariability &uncertainties 性能指标2 CPS2 性能指标1 CPS1 运行性能 评估Performance Assessment 实时调度模拟/ Real-time Dispatch simulation 基于理论的统计分析 Statistical analysis 发电备用调度模拟结果Simulation of Energy market, Regulating reserve & Tie flow 模拟的性能指标 Simulated results of:ACE, CPS2 OTC violations 衡量各种变化的指标 Variability indices

  11. 统计分析实例:1小时的变化分析Statistic analysis example: 1 hour variability 负荷与风电出力相互独立 The variability of load and wind power are independent 随着风电的增加,风电出力对系统整体的变化及不确定的影响从可忽略到共同主导 As wind power increase, the wind power variability can increase the overall system variability to a level that can not be ignored and more dominate

  12. 统计分析实例:4小时的系统不确定性影响Statistic analysis example: 4 hour uncertainty 风电不确定性对系统整体不确定性的影响随电规模增大而增大 / The wind power uncertainty can have ignorable or significant impact on overall system uncertainty depend on the penetration level and timeframes 风电增加对系统不确定性的影响更加显著 Wind power uncertainty could increase faster than load as level increase

  13. 统计分析实例:风电出力持续变化分析Statistic analysis example: Changing event-based analysis 随着风电规模的增大 There will be more, longer and faster persistent system changing as wind penetration increase 对调节跟踪能力有限的系统带来压力 It put pressure on system with limited ramping capability 900MW 250MW 2000MW 1500MW 幅度1400-1600MW 历时5-6小时系统持续变化发生4次 / there is 4 changing events with duration of 5-6 hours and ramp-down magnitude of 1400-1600MW

  14. 仿真分析,方法及假设条件Simulation-based analysis, Methodology and Assumption Step 2: 每分钟仿真 1-minute simulation Step 1: 发电调度决策仿真 Determine Energy Market Dispatch(Every 20 minutes) 计算调度出力变化,考虑系统应变速度和相应时间 Calculate the Energy market movement with ramping capability limitation and response delay 未来20分钟调度决策 Energy Market Dispatch for next 20 minutes • 当前调度误差Current Supply- • Demand Imbalance (ACE) 预期负荷变化Expected Load change 调度有效性准则 出力调度幅度应 >20MW Dispatch validation MW threshold, if imbalance within +/- 20MW, no instruction is made and any imbalance is handled by RR or ACE 计算调度出力与实际需求间的误差 / Calculate the mismatch between supply and demand 潮流交换计划 Interchange Schedule change 计算平衡出力误差所需的调节备用 / Calculate required regulating reserve movement to balance the mismatch 10% of MW range/min 递归迭代算法 Recursive Iteration Algorithm 风电出力预测Expected wind generation (persistent forecast …) 无法平衡的误差即为“区域控制误差” Remaining mismatch is simulated ACE • Step 3: 计算对运行性能的影响 / Calculate impact to system performance criteria • CPS2 • OTC violation

  15. 基于仿真的分析,仿真模型分析界面Simulation-based analysis, Simulation model GUI 调节备用容量 RR range Load 风电出力Wind power 仿真备用调度 SIM. RR dispatch 仿真区控误差SIM. ACE 历史区控误差 HIST. ACE 历史调度出力Historical EMD 仿真性能指标越限 SIM. CPS2 Violation 余度 Ld 仿真调度出力 Simulated EMD -Ld 仿真区控误差SIM. ACE 仿真潮流交换 Simulated Interchange 20-min moving minimum off-schedule 输电可靠性备用 TRM 潮流输出限制 Export Limit 潮流计划 InterchangeSchedule 潮流输入限制Import Limit Wind power data quality Tag System data quality Tag

  16. 系统影响分析 1 – 结论System Impact Study phase-1 conclusions • 4个风电开发方案(包括1个当前方案,验正模型),用以确定风电增加对系统的增量影响。所有3个风电发展方案都有性能指标越陷的问题 4 wind development scenarios (existing + 3 future), to identify the incremental impact effect. All 3 growth scenarios studied resulted in one or more performance violations. • 分析结果显示风电增加和系统运行控制性能指标下降和传输能力越限的因果关系 / There is an observable relationship between increased wind power development, Decreased CPS2 performance and Increased OTC violations. • 大规模风电并网运行将需要制定、实施应对措施以保证系统的安全可靠运行 It is highly likely that mitigating measures will need to be developed and implemented in order to integrate large scale wind power and maintain the reliable and safe system operation

  17. 调查评估各种针对出力变化和不确定性的应对措施 – 系统影响分析2Investigate and Assess Different Mitigation solutions of Power Variability and Uncertainty (10) – System Impact Study phase-2 • 有效的应对措施包括: / Effective mitigating measures for wind power integration are: • 风电出力预测 / wind power forecasting • 增加发电调度的可控变化能力 / More energy market ramping capability • 增加的调节备用或追踪备用容量 / additional regulating or following service • 风电出力管理 / wind power management • 无效的应对措施 / The ineffective mitigating measures are: • 负荷的自然增长 / Increases in AIES load • 增加调节备用的调节速度 / Increasing the regulating reserves ramp rate

  18. 风电出力变化及不确定应对措施的实施 – AESO发展风电市场&运行框架Solutions of Wind Power Variability and Uncertainty- AESO Market and Operation Framework (MOF) for Wind Power Integration (1) • 原则:在保证系统安全可靠运行和市场公平和效率的同时尽量增加风电的并网 Tointegrate as much wind power into the Alberta system as is feasible without compromisingsystem reliability or the fair, efficient and openly competitive operation of the market. • 目的是建立一个稳固的基础作为通过实践不断改进完善的起点 The intent is to develop a solid starting point from which to continuously improve • 建立适当的机制使得市场力量能够优化解决方案 / To set up proper mechanism to allow the market force lead to solutionsoptimization • 在获得合理风电出力预测的前提下,运行人员可以制定计划采用以下措施吸收预测的分风电发电 / The premise – If the System Operator receives a reasonable forecast of wind power generation, then they can establish an operating plan to accommodate the forecast wind energy by using the following resources / tools: • 预测 / Forecasting • 发电调度排序 / The Energy Market Merit Order • 调节备用 / Regulating Reserves • 跟踪备用 / Wind Following Services • 风电出力管理 / Wind Power Management

  19. 市场运行框架 – 具体工作AESO MOF for Wind Power Integration – Work streams • 市场&运行规则 / Market & Operating Rules • 风电出力管理 / Wind Power Management • 风电出力预测 / Wind Power Forecasting • 额外的辅助服务的预测和获取 / Additional Accessory Services Forecast / Procurement • 系统运行辅助软件工具 / System Operator Tools • 接入系统 / Interconnection • 接入排序管理 / Queue Management Practices • 接入系统标准 (出力管理、预测等) / Standards for Interconnection (Power Management & Forecasting Requirement) • 电源发展方案预测方法 / Generator Scenario Development Methodology • 输电网规划 / Transmission Planning • 鼓励分散多样性 / Diversity

  20. 具体工作之一运行辅助软件工具MOF Work Stream (1) – Operator tools • 分析工具 / Engineering tool • 用以在设计、测试各种可能实施的运行规程 / To design and test protocols, procedures before implementation into OPPs • 实时运行的辅助工具 / Real-time system operation tool • 用以帮助有效管理 / To effectively manage: • 各种规程的实时操作 / The procedures in the real-time • 保证复杂运行决策的有效、一致和透明度 / complicated real-time system operation with Efficiency, Consistency and Transparency • 提供知识、信息、经验共享和不断完善的共享平台Common basis for knowledge sharing, experience and continuous improvement

  21. Dispatch logs (EMS) Actual Generator output (PI) Energy & RR 系统状态 / System Status • 各种分析评估/Operation assessment • To balance between Supply and Demand • To assess the situation & risk of: • System Ramping Capability • Supply Shortfall issue • Supply Surplus (Zero-offer) issue • Minimum technical output issue • OTC violation issue • 运行决策 / Operation decisions • Energy Market Dispatch • Trigger Supply surplus process • Trigger Supply shortfall process • Additional Service Dispatch • Wind Power Management 运行辅助软件工具的功能框架 Work stream – Tools: Architecture Load Forecast (EMS) Energy Market Merit Orders (EMS) Interchange Schedule or Forecast (EMS) Generator Ramping Characteristic RR Merit Orders (ETS or EMS) ATC limits (IPCTCP) Wind Power forecast Additional Services Uncertainty analysis Wind Power Management 系统的变化 System Changes 系统发电和控制 System Supplies & Controls

  22. 问题和交流? Question or Comments? 相关信息: Related Information can be found at: • 阿尔伯塔风电出力的变化研究 / Alberta Wind Variability Study • http://www.aeso.ca/gridoperations/13847.html • 阿尔伯塔风电的系统影响分析 1 / AESO Wind Power System Impact Study - Phase1 • http://www.aeso.ca/downloads/Incremental_Effects_on_System_Operations_with_Increased_Wind_Power_Penetration_rev_2_3.pdf • AESO风电系统影响分析模型简介 / AESO Wind Power System Impact Simulation Model Presentation • http://www.deq.state.mt.us/Energy/Renewable/DispatchSimulationModel_v4.pdf • 阿尔伯塔风电的系统影响分析 2 / AESO Wind Power System Impact Study – Phase2 • http://www.aeso.ca/downloads/AESO_Phase_II___Wind_Integration_Impact_Studies_final_20060718.pdf • 阿尔伯塔发展风电市场及运行框架 / AESO Market & Operation Framework for Wind Power Integration • http://www.aeso.ca/gridoperations/13030.html • AESO风电出力预测试点项目 / AESO wind Power Forecast Pilot Project • http://www.aeso.ca/gridoperations/13825.html • AESO风电运行及市场信息周报 / AESO Weekly Wind Power Operation and Market Reports • http://www.aeso.ca/gridoperations/14246.html • 更多信息 / For more information: • http://www.aeso.ca/gridoperations/13902.html • ming.hu@aeso.ca, (403)539-2503

More Related