1 / 16

Decay Ring Options for VLENF

This document provides an overview of the options for a decay ring in the VLENF, including conventional decay ring and solenoid ring. It covers topics such as racetrack vs dogbone ring, acceptance studies, combined-function magnet ring, and axially symmetric focusing.

darlenem
Download Presentation

Decay Ring Options for VLENF

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Decay Ring Options for VLENF Alex Bogacz and Vasiliy Morozov VLENF phone Mtg. April 12, 2012

  2. Overview • Conventional Decay Ring (3GeV) • Dipoles 1.2 Tesla • Quads • Racetrack vsDogbone Ring • Acceptance studies (OptiM and MAD-X tracking) • Combined function magnet Ring • Solenoid Ring • Axially symmetric focusing - Solenoids • Dipole bends • Acceptance studies (OptiM tracking) VLENF phone Mtg. April 12, 2012

  3. Racetrack vs Dogbone Decay Ring 242 meter Racetrack Ring 57 m arc 2 × 64 m straights 57 m arc 352 meter Dogbone Ring 112 m droplet 112 m droplet 64 m straight VLENF phone Mtg. April 12, 2012

  4. 3 30 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 243 3 30 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 351.817 Racetrack vs Dogbone Ring - Optics Muon decay at 3 GeV (e-folding) 77 turns 52 turns VLENF phone Mtg. April 12, 2012

  5. 20 1.5 BETA_X&Y[m] DISP_X&Y[m] -1.5 0 0 BETA_X BETA_Y DISP_X DISP_Y 121.5 Ring Optics (900 doublets + 300 FODO) racetrack ring (2×121.5 = 243 meter circumference ) P = 3 GeV/c bend L[cm]=250 B[kG]=12.575 qFL L[cm]=100 G[kG/cm]=0.2 qDL L[cm]=100 G[kG/cm]=-0.2 qF L[cm]=60 G[kG/cm]=1.12 qD L[cm]=60 G[kG/cm]=-1.09 qFL L[cm]=100 G[kG/cm]=0.2 qDL L[cm]=100 G[kG/cm]=-0.2 VLENF phone Mtg. April 12, 2012

  6. 30 30 Size_Y[cm] Size_X[cm] 0 0 0 Ax_bet Ay_bet Ax_disp Ay_disp 121.5 Ring (half) – Beam Envelope P = 3 GeV/c 2.5 s beam envelope aperture radius L[cm]=20 aperture radius L[cm]=25 eN = 30 mm rad sDp/p= 0.05 VLENF phone Mtg. April 12, 2012

  7. Dynamic Aperture – 80 turns initial 1.000000 $MuDecay=2.2e-6; => 2.2e-06 $C=12150*2; => 24300 $NTurn=$gamma*$MuDecay*$beta*$c/$C; => 77 turn 1 0.720300 turn 80 0.540900 0.569300 turn 30 eN = 30 mm rad sDp/p= 0.05 NuFact08, Valencia 6/30/08 VLENF phone Mtg. April 12, 2012

  8. Transverse Acceptance – 80 turns initial 1.000000 turn 80 0.540900 eN = 30 mm rad sDp/p= 0.05 NuFact08, Valencia 6/30/08 VLENF phone Mtg. April 12, 2012

  9. Racetrack Lattice in MAD-X 9 V.S. Morozov VLENF phone Mtg. April 12, 2012

  10. Tracking in MAD-X 1 turn, 62.3% Initial, 100% 80 turns, 53.7% 30 turns, 55.0% • 1000 particles, xN = 30 mmrad, yN = 30 mmrad, p/p = 0.05, same collimation as Alex • Limitations due to physical apertures  Stronger focusing needed to improve acceptance 10 V.S. Morozov VLENF phone Mtg. April 12, 2012

  11. Combined-Function FODO Lattice • Focusing strength is the same as of the same-length separate-function lattice 11 V.S. Morozov VLENF phone Mtg. April 12, 2012

  12. 3 30 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 255.8 Solenoid Ring racetrack ring (256 meter circumference ) P = 3 GeV/c VLENF phone Mtg. April 12, 2012

  13. 3 20 BETA_X&Y[m] DISP_X&Y[m] -3 0 0 BETA_X BETA_Y DISP_X DISP_Y 127.9 Solenoid Ring (Half) racetrack ring (256 meter circumference ) P = 3 GeV/c 16  bends + 15 solenoids 16 solenoids solenoid L[cm]=100 B[kG]=22-78 r[cm]=30 bend L[cm]=150 B[kG]=12. solenoid L[cm]=100 B[kG]=47-103 r[cm]=25 VLENF phone Mtg. April 12, 2012

  14. Dynamic Aperture – 70 turns $MuDecay=2.2e-6; => 2.2e-06 $C=25600; => 25600 $NTurn=$gamma*$MuDecay*$beta*$c/$C; => 73. initial 1.000000 0.499000 turn 73 eN = 30 mm rad sDp/p= 0.05 NuFact08, Valencia 6/30/08 VLENF phone Mtg. April 12, 2012

  15. Summary – Conventional Ring • Decay Ring (3 GeV Racetrack of 243 meter circumference) • 7 m betas, 90 cm hor. dispersion in the Arcs • 15 m betas in the Straight • Acceptance - Dynamic Aperture Study • transverse: eN= 30 mm rad • momentum: sDp/p= 0.05 • Physical aperture: r = 20 cm (Arc) and r = 25 cm (Straight) • 46% dynamic lost after 80 turns • Compact Ring Optics – Linear lattice • Dipole bends (2.5 m long, 12.6 kGauss)  20 • Doublet focusing - Quads (0.6 m long, 1.1 kGaus/cm)  44 • FODO focusing - Quads (1 m long, 0.2 kGaus/cm)  38 VLENF phone Mtg. April 12, 2012

  16. Summary – Solenoid Ring • Decay Ring (3 GeV Racetrack of 256 meter circumference) • ~250 cm hor. dispersion in the Arcs • ~8 m Beta functions Arc • ~15 m Beta functions straight • Acceptance: • transverse: eN= 30 mm rad • momentum: sDp/p= 0.05 • Physical acceptance: r = 25/30 cm • Compact Ring Optics – Linear lattice • Axially symmetric focusing - Solenoids (4-10 Tesla) • Dipole bends (1.2 Tesla) VLENF phone Mtg. July 12, 2011

More Related