1 / 30

Chapter 14

Chapter 14. Chemical Periodicity. Objective A. Chapter 14 is a very short chapter. We also already know some of what is in this chapter. The Periodic Table groups elements according to their properties. Look at the first group. It has H and Li and Na, etc.

danica
Download Presentation

Chapter 14

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 14 Chemical Periodicity

  2. Objective A • Chapter 14 is a very short chapter. We also already know some of what is in this chapter. • The Periodic Table groups elements according to their properties. • Look at the first group. It has H and Li and Na, etc. • All of these elements behave in the same ways. • If you know the properties of Li and Na, you can make a very good inference that K and Cs will behave the same way.

  3. Objective Ahttp://www.rsc.org/chemsoc/visualelements/Pages/data/intro_groupi_data.html • You can only say that about elements in the same group (column, going up and down) • Elements in the same period can have different properties, so you can’t make the assumption that Na will behave like Mg or Mg will behave like Al. • We can use the electron configuration to make assumptions about the element. Elements in the same group will have the same “ending” to their electron configuration. Li [He]2s1Na [Ne]3s1 K [Ar]4s1 Rb [Kr]5s1 Cs [Xe]6s1 Fr [Rn]7s1

  4. Objective Bhttp://www.rsc.org/chemsoc/visualelements/Pages/data/intro_groupviii_data.html • Alkali metals all have 1 electron in their highest occupied energy level. • Noble gases all have 8 electrons in their highest occupied energy level. That’s not true for Helium, but remember that Helium only has the 1s orbital (so when it has 2 electrons, it’s highest occupied energy level is full). • We call the electrons in the highest occupied energy level the “valence electrons.” He 1s2Ne [He]2s22p6 Ar [Ne]3s23p6 Kr [Ar]3d104s24p6 Xe [Kr]4d105s25p6 Rn [Xe]4f145d106s26p6 Shorthand configurations…we’ll learn about those in just a sec…

  5. Objective Bhttp://www.rsc.org/chemsoc/visualelements/PAGES/data/intro_groupvii_data.html • Notice that the halogens all have an ending configuration of ns2np5. That means they have 7 valence electrons. • Let’s also look at the transition metals. We’ll only look at the first row, called the first transition series of elements. F [He]2s22p5Cl [Ne]3s23p5 Br [Ar]3d104s2 4p5 I [Kr]4d105s2 5p5 At [Xe]4f14 5d106s2 6p5

  6. Objective B • All of the transition metals have 2 valence electrons, with 2 exceptions. • Transition metals are where the d orbitals are being filled up. Here are the electron configurations for all of them.

  7. Objective B • Notice that Cr and Cu are “exceptions.” • They both have 1 valence electron. They do this because in the case of Cr, moving an electron from the 4s level to the 3d level gives us a half full set of d orbitals.

  8. Objective B • That’s more stable than if Cr would have followed the pattern, and ended with “4s23d4” • Similarly, Cu has 1 electron in the 4s energy level and 10 in the 3d level, because having a full set of d electrons is also more stable.

  9. Objective B • We won’t do much in this class with the second transition series or the third. • We will talk about some of those elements, but most of the patterns for the first transition series will hold true for the others.

  10. Objective B • The “inner transition metals” are the lanthanide and actinide series. • That’s where the f electrons are filled up. • That’s about all I’m going to say about that, except that Glenn Seaborg was the first to propose the existence of the actinides. • He called it the Actinide Hypothesis, and many scientists felt that he was wrong. However, he was proven to be correct.

  11. Objective B • Shorthand configurations are a useful tool. • As you can see, when you get a lot of electrons, the configuration can get pretty long. • Let’s look at an example for Y, Z=39

  12. Objective B • The electron configuration for yttrium is • 1s22s22p63s23p64s23d104p65s24d1 • To do a shorthand configuration, we use the noble gas preceding the element and we put that in brackets.

  13. Objective B • 1s22s22p63s23p64s23d104p65s24d1 • The noble gas that precedes Y is Kr. • Kr electron configuration is 1s22s22p63s23p64s23d104p6, which we represent as [Kr].

  14. Objective B • 1s22s22p63s23p64s23d104p65s24d1 • I can replace the underlined part with [Kr], leaving me with a shorthand configuration of • [Kr]5s24d1

  15. Objective B • Do a shorthand configuration for • Fe • Br • Hg don’t forget that after 6s comes 4f and 5d!

  16. Objective B • Do a shorthand configuration for • Fe = [Ar]4s23d6 • Br = [Ar]4s23d104p5 • Hg = [Xe]6s24f145d10

  17. Objective C • The periodic table allows you to predict trends in certain properties. • Atomic radius is one of those properties. • Atomic radius is the size of the atom. It’s defined as ½ the distance between two nuclei which are bonded together.

  18. Objective C • Ionic radius is another property • It is the size of an ion. Ionic radius is fairly similar to atomic radius. • A positive ion is also called a CATION. • A negative ion is also called an ANION.

  19. Objective C • A cation is always smaller than the atom it is formed from. • An anion is always larger than the atom it is formed from. • Since cations lose electrons to form positive ions and anions gain electrons to form negative ions, that should make sense.

  20. Objective C • Ionization energy is the amount of energy required to remove an electron from a gaseous atom. • The energy required to remove the first electron is called the FIRST IONIZATION ENERGY.

  21. Objective C • The energy required to remove the second electron is the second ionization energy. • Metals always have LOWER ionization energies than nonmetals. • That is because metals tend to lose electrons and nonmetals tend to gain them.

  22. Objective C • It is easier to remove a valence electron (an electron in the highest energy level) than an “inner core” electron. • The inner core electrons are the electrons in the lower energy levels. For example, sodium has 1 valence electron in the 3rd energy level. Sodium has 8 electrons in the 2nd energy level and 2 in the 1st. The 10 electrons in the 1st and 2nd levels are called “inner core” electrons.

  23. Objective C • Electronegativity is the tendency of an element to attract electrons to itself when they are bonded to another element. • Nonmetals have a very high electronegativity and metals have a very low electronegativity.

  24. Objective C • Electronegativity is measured on a scale from 0.0 to 4.0. • By definition, F is the most electronegative element at 4.0.

  25. Objective C • Now the trends….. • Atomic radius increases as you go down a group. • Atomic radius decreases as you go from left to right across a period.

  26. Objective C • Now the trends….. • Ionic radius increases as you go down a group. • Ionic radius decreases as you go from left to right across a period. • However, there is a big jump in size between groups 4A and 5A (this is where you switch from cations to anions).

  27. Objective C • Now the trends….. • Ionization energy decreases as you go down a group. • Ionization energy increases as you go from left to right across a period.

  28. Objective C • Now the trends….. • Electronegativity decreases as you go down a group. • Electronegativity increases as you go from left to right across a period.

  29. Objective C • If it helps…put arrow on one of your periodic tables showing the trends.

  30. The End

More Related