1 / 32

How is Light Produced?

How is Light Produced?. It ’ s all tied to energy Energy of the material ’ s temperature Energy levels within atoms. Motivation. If we understand how light is produced, then when we see light we ’ ll know the conditions under which it was created. Examples: That scope thing Spock uses

clay
Download Presentation

How is Light Produced?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. How is Light Produced? • It’s all tied to energy • Energy of the material’s temperature • Energy levels within atoms

  2. Motivation • If we understand how light is produced, then when we see light we’ll know the conditions under which it was created. • Examples: • That scope thing Spock uses • Atmospheric composition of a newly discovered planet • Can a given star support life?

  3. Kirchoff’s Laws - 3 types of spectra • Continuous or Continuum • Ex: Blackbody radiation • Emission • Absorption

  4. Hot solid thing Transparent thing blocking other hot thing Hot gaseous thing

  5. Hot dense thing

  6. Continuous Spectrum • Continuous, continuum • All colors • Examples: stars are nearly blackbody, incandescent light bulbs, electric burners, people, etc.

  7. Causes of Continuum • Blackbody • Thermal • Hot dense material • Bremsstrahlung / Free-free • An electron passes by a proton / nucleus • Recombination / Free-bound • Electron captured by a proton / nucleus • Compton Scattering • Existing photon has its wavelength changed by a collision

  8. http://www.oswego.edu/~kanbur/a100/images/planck.jpg (Assuming stars are same size.)

  9. Planck’s Law • Completely describes the light (blackbody radiation) coming from an object.

  10. Stefan-Boltzmann Law • L=σT4×star’s surface area • The total brightness of an object (at all colors added together) depends on the Temperature to the 4th power (and size of the object). • Temperature makes objects glow. The hotter it is, the more it glows.

  11. http://www.oswego.edu/~kanbur/a100/images/planck.jpg (Assuming stars are same size.)

  12. Wein’s Law • λmax=2,900,000/T (in nm) • What color an object is brightest at depends on the Temperature of the object. • Hotter objects are brightest in blue/purple (and ultraviolet). • Cooler objects are brightest in red (and infrared).

  13. http://hypertextbook.com/physics/modern/planck/ Our Sun looks yellow Hottest stars look blue (Assuming same size stars.) Cool stars look red

  14. How can you tell which object is hotter/larger • Color of the peak tells us the object’s temperature. • If two objects have the same color, the brighter one is physically larger. • If two objects of the same size, the hotter one will be brighter at all colors.

  15. Hot gaseous thing

  16. Emission Spectrum • Hot thin gas • Only a few select colors • Examples: some fluorescent lights, neon lights, natural gas flames, warm gas clouds in space

  17. http://astronomy.nmsu.edu/nicole/teaching/ASTR110/lectures/lecture19/pics/emission_spectra.gifhttp://astronomy.nmsu.edu/nicole/teaching/ASTR110/lectures/lecture19/pics/emission_spectra.gif

  18. http://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.pnghttp://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.png When an electron goes down an orbital

  19. http://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.pnghttp://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.png A photon comes out of a specific color

  20. Absorption Spectrum • Hot dense object blocked by cool thin gas • Continuum minus emission • All colors except a select few • Examples: nearby gas cloud blocks a farther star, nearer galaxy blocks a far quasar, sunglasses block sunlight, Earth’s atmosphere blocks sunlight

  21. Transparent thing blocking other hot thing

  22. http://www.solarobserving.com/pics/hydrogen-spectra.jpg

  23. Absorption and emission spectra are opposite in appearance and cause.

  24. Emission spectrum Electrons go down levels on their own and put out light as a result.

  25. http://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.pnghttp://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.png When an electron goes down an orbital

  26. http://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.pnghttp://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.png A photon comes out of a specific color

  27. Absorption Spectrum Light of all colors comes in. When the color is just right, it makes the electron pop up to a higher level.

  28. http://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.pnghttp://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.png Light of all colors comes in

  29. http://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.pnghttp://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Bohr-atom-PAR.svg/310px-Bohr-atom-PAR.svg.png Only the right color of light is used up to make the electron jump up orbitals

  30. http://www.physics.umd.edu/courses/Phys401/bedaque06/discrete_spectra.jpghttp://www.physics.umd.edu/courses/Phys401/bedaque06/discrete_spectra.jpg bright emission lines become dark absorption lines

  31. Conclusion • Colors of light (how many colors and how bright) call tell us the temperature, density, composition, and even shape of an object.

More Related