630 likes | 645 Views
Explore De Moivre’s formula connecting complex numbers and trigonometry, deriving expressions for nth roots of unity, and proving the theorem in real, negative, and fractional cases. Discover applications in mathematical induction and finding complex roots.
E N D
De Moivre’s Theorem & simple applications By Chtan FYHS-Kulai
In mathematics, de Moivre‘s formula, named after Abraham de Moivre. By Chtan FYHS-Kulai
The formula is important because it connects complex numbersand trigonometry. The expression "cos x + i sin x" is sometimes abbreviated to "cis x". By Chtan FYHS-Kulai
By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos(nx) and sin(nx) in terms of cos(x) and sin(x). By Chtan FYHS-Kulai
Furthermore, one can use a generalization of this formula to find explicit expressions for the n-th roots of unity, that is, complex numbers z such that zn = 1. By Chtan FYHS-Kulai
De Moivre’s theorem For all values of n, the value, or one of the values in the case where n is fractional, of is By Chtan FYHS-Kulai
Proofing of De Moivre’s Theorem By Chtan FYHS-Kulai
Now, let us prove this important theorem in 3 parts. • When n is a positive integer • When n is a negative integer • When n is a fraction By Chtan FYHS-Kulai
Case 1 : if n is a positive integer By Chtan FYHS-Kulai
Continuing this process, when n is a positive integer, By Chtan FYHS-Kulai
Case 2 : if n is a negative integer Let n=-m where m is positive integer By Chtan FYHS-Kulai
Case 3 : if n is a fraction equal to p/q, p and q are integers By Chtan FYHS-Kulai
Raising the RHS to power q we have, but, By Chtan FYHS-Kulai
Hence, De Moivre’s Theorem applies when n is a rational fraction. By Chtan FYHS-Kulai
Proofing by mathematical induction By Chtan FYHS-Kulai
The hypothesis of Mathematical Induction has been satisfied , and we can conclude that By Chtan FYHS-Kulai
e.g. 1 Let z = 1 − i. Find. Soln: First write z in polar form. By Chtan FYHS-Kulai
Polar form : Applying de Moivre’s Theorem gives : By Chtan FYHS-Kulai
It can be verified directly that By Chtan FYHS-Kulai
Properties of By Chtan FYHS-Kulai
If then By Chtan FYHS-Kulai
Hence, By Chtan FYHS-Kulai
Similarly, if Hence, By Chtan FYHS-Kulai
We have, Maximum value of cosθ is 1, minimum value is -1. Hence, normally By Chtan FYHS-Kulai
What happen, if the value of is more than 2 or less than -2 ? By Chtan FYHS-Kulai
e.g. 2 Given that Prove that By Chtan FYHS-Kulai
e.g. 3 If , find By Chtan FYHS-Kulai
Do take note of the following : By Chtan FYHS-Kulai
e.g. 4 By Chtan FYHS-Kulai
Applications of De Moivre’s theorem By Chtan FYHS-Kulai
We will consider three applications of De Moivre’s Theoremin this chapter. 1. Expansion of . 2. Values of . 3. Expressions for in terms of multiple angles. By Chtan FYHS-Kulai
Certain trig identities can be derived using De Moivre’s theorem. In particular, expression such as can be expressed in terms of : By Chtan FYHS-Kulai
e.g. 5 Use De Moivre’s Thorem to find an identity for in terms of . By Chtan FYHS-Kulai
e.g. 6 Find all complex cube roots of 27i. Soln: We are looking for complex number z with the property Strategy : First we write 27i in polar form :- By Chtan FYHS-Kulai
Now suppose Satisfies . Then, by De Moivre’s Theorem, By Chtan FYHS-Kulai
This means : where k is an integer. Possibilities are : k=0, k=1, k=2 By Chtan FYHS-Kulai
In general : to find the complex nth roots of a non-zero complex number z. 1. Write z in polar form : By Chtan FYHS-Kulai
2. z will have n different nth roots (i.e. 3 cube roots, 4 fourth roots, etc.) 3. All these roots will have the same modulus the positive real nth roots of r) . 4. They will have different arguments : By Chtan FYHS-Kulai
5. The complex nth roots of z are given (in polar form) by …etc By Chtan FYHS-Kulai
e.g. 7 Find all the complex fourth roots of -16. Soln: Modulus = 16 Argument = ∏ By Chtan FYHS-Kulai
Fourth roots of 16 all have modulus : and possibilities for the arguments are : By Chtan FYHS-Kulai
Hence, fourth roots of -16 are : By Chtan FYHS-Kulai
e.g. 8 Given that and find the value of m. By Chtan FYHS-Kulai