FÍSICA II Aula 3 Impulso Prof. Cláudio Soares claudios @ pitagoras.com.br ENGENHARIA DE PRODUÇÃO - PowerPoint PPT Presentation

arleen
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
FÍSICA II Aula 3 Impulso Prof. Cláudio Soares claudios @ pitagoras.com.br ENGENHARIA DE PRODUÇÃO PowerPoint Presentation
Download Presentation
FÍSICA II Aula 3 Impulso Prof. Cláudio Soares claudios @ pitagoras.com.br ENGENHARIA DE PRODUÇÃO

play fullscreen
1 / 50
Download Presentation
FÍSICA II Aula 3 Impulso Prof. Cláudio Soares claudios @ pitagoras.com.br ENGENHARIA DE PRODUÇÃO
227 Views
Download Presentation

FÍSICA II Aula 3 Impulso Prof. Cláudio Soares claudios @ pitagoras.com.br ENGENHARIA DE PRODUÇÃO

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. FÍSICA II Aula 3 Impulso Prof. Cláudio Soares claudios@pitagoras.com.br ENGENHARIA DE PRODUÇÃO

  2. ASSUNTOS ABORDADOS • Impulso • Quantidade de Movimento • Teorema do Impulso • Sistema Isolado de Forças • Princípio da Conservação da Quantidade de Movimento • Colisões

  3. Impulso É a grandeza física vetorial relacionada com a força aplicada em um corpo durante um intervalo de tempo. O impulso é dado pela expressão: I = impulso (N.s); F = força (N); Dt = tempo de atuação da força F (s).

  4. Impulso Ao empurrarmos um carro, por exemplo, quanto maior a intensidade da força e o tempo de atuação dessa força, maior será o impulso aplicado no carro. O Impulso é uma grandeza vetorial que possui a mesma direção e sentido da força aplicada.

  5. Impulso Canhões de longo alcance possuem canos compridos. Quanto mais longo este for, maior a velocidade emergente da bala. Isso ocorre porque a força gerada pela explosão da pólvora atua no cano longo do canhão por um tempo mais prolongado. Isso aumenta o impulso aplicado na bala do canhão. O mesmo ocorre com os rifles em relação aos revólveres.

  6. Impulso Quando a força aplicada não for constante ao longo do tempo, a intensidade do impulso pode ser calculada através da Área do gráfico F x t com o eixo do tempo, conforme a seguir.

  7. Quantidade de Movimento Todos nós sabemos que é muito mais difícil parar um caminhão pesado do que um carro que esteja se movendo com a mesma rapidez. Isso se deve ao fato do caminhão ter mais inércia em movimento, ou seja, quantidade de movimento.

  8. Quantidade de Movimento É a grandeza física vetorial relacionada com a massa de um corpo e sua velocidade. A quantidade de movimento, ou momento linear, é dada pela expressão: Q = quantidade de movimento (kg.m/s); m = massa (kg); v = velocidade (m/s).

  9. Quantidade de Movimento A quantidade de movimento é uma grandeza vetorial que possui a mesma direção e sentido da velocidade. As unidades (dimensões) de Impulso e Quantidade de Movimento são equivalentes:

  10. Teorema do Impulso Considere um corpo de massa m que se desloca em uma superfície horizontal com uma velocidade vo. Em um certo instante passa a atuar nele uma força resultante de intensidade F, durante um intervalo de tempo Dt. O impulso produzido pela força F é igual a:

  11. Teorema do Impulso Para o mesmo intervalo de tempo, o impulso da força resultante é igual à variação da quantidade de movimento.

  12. Sistema Isolado de Forças Considere um sistema formado por dois corpos A e B que se colidem. No sistema, as forças decorrentes de agentes externos ao sistema são chamadas de forças externas, como, por exemplo o peso P e a normal N. No sistema, a resultante dessas forças externas é nula.

  13. Sistema Isolado de Forças Durante a interação, o corpo A exerce uma força F no corpo B e este exerce no corpo B uma força -F, de mesmo módulo e sentido oposto. As forças F e -F correspondem ao par Ação e Reação. Denomina-se sistema isolado de forças externas o sistema cuja resultante dessas forças é nula, atuando nele somente as forças internas.

  14. Princípio da Conservação da Quantidade de Movimento Considerando um sistema isolado de forças externas: Pelo Teorema do Impulso Como • A quantidade de movimento de um sistema de corpos, isolado de forças externas, é constante.

  15. Observações A quantidade de movimento pode permanecer constante ainda que a energia mecânica varie. Isto é, os princípios da conservação de energia e da quantidade de movimento são independentes. A quantidade de movimento dos corpos que constituem o sistema mecanicamente isolado não é necessariamente constante. O que permanece constante é a quantidade de movimento total dos sistema.

  16. Observações Durante uma desfragmentação ou explosão o centro de massa do sistema não altera o seu comportamento.

  17. Colisões As colisões podem ocorrer de duas maneiras distintas, dependendo do que ocorre com a energia cinética do sistema antes e depois da colisão. 1 - Colisão Elástica 2 - Colisão Inelástica

  18. Colisão Elástica Suponha que duas esferas, A e B, colidissem de tal modo que suas energias cinéticas, antes e depois da colisão, tivessem os valores mostrados na figura a seguir.

  19. Colisão Elástica Observe que, se calcularmos a energia cinética total do sistema, encontraremos: Antes da Colisão: EcA + EcB = 8+4 = 12j Após a Colisão: EcA + EcB = 5+7 = 12j Neste caso, a energia cinética total dos corpos que colidiram se conservou. Esse tipo de colisão, na qual, além da conservação de movimento (que sempre ocorre), há também a conservação da energia cinética, é denominada colisão elástica.

  20. Colisão Elástica

  21. Colisão Inelástica (ou Plástica) É aquela onde a energia cinética não se conserva. Isso ocorre porque parte da energia cinética das partículas envolvidas no choque se transforma em energia térmica, sonora etc. Não se esqueça, mesmo a energia cinética não se conservando, a quantidade de movimento do sistema se conserva durante a colisão. A maioria das colisões que ocorrem na natureza é inelástica.

  22. Colisão Inelástica (ou Plástica)

  23. Colisão Perfeitamente Inelástica É aquela que, após o choque, os corpos passam a ter a mesma velocidade (movem-se juntos), tendo a maior perda possível de energia cinética do sistema. A figura a seguir exemplifica um colisão perfeitamente inelástica. Obs.: na colisão perfeitamente inelástica não se perde, necessariamente, toda a energia cinética.

  24. Colisão Perfeitamente Inelástica

  25. Coeficiente de Restituição O coeficiente de restituição é definido como sendo a razão entre a velocidade de afastamento e a de aproximação. Se um corpo for abandonado de uma altura H e após o choque com o chão o corpo atingir a altura h, temos:

  26. Coeficiente de Restituição O coeficiente de restituição é um número puro (grandeza adimensional), extremamente útil na classificação e equacionamento de uma colisão:

  27. LEMBRE-SE QUE • O impulso é uma grandeza vetorial relacionada com uma força e o tempo de atuação da mesma. • Quantidade de movimento é uma grandeza vetorial que possui mesma direção e sentido do vetor velocidade. • O impulso corresponde à variação da quantidade de movimento. • Durante uma colisão (ou explosão) a quantidade de movimento do sistema permanece constante. • A quantidade de movimento pode permanecer constante ainda que a energia mecânica varie. • Após a colisão perfeitamente inelástica os corpos saem juntos.

  28. Exemplos

  29. A figura mostra dois blocos, A e B, em repouso, encostados em uma mola comprimida, de massa desprezível. Os blocos estão apoiados em uma superfície sem atrito e sua massas são 5,0kg e 7,0kg, respectivamente. Supondo que o bloco B adquira uma velocidade de 2,0m/s, qual a velocidade adquirida pelo bloco A?

  30. Despreze todas as formas de atrito e considere que: a - inicialmente, o conjunto se encontra em repouso; b - m2 = 4 m1; c - o corpo de massa m1 é lançado horizontalmente para a esquerda, com velocidade de 12m/s. Tendo em vista o que foi apresentado, qual será a velocidade de lançamento do bloco m2?

  31. IGUAL Ação e Reação Um automóvel de 1,0 tonelada colidiu frontalmente com um caminhão de 9,0 toneladas. A velocidade do automóvel era de 80km/h para a direita e a do caminhão, de 40km/h para a esquerda. Após a colisão, os dois veículos permaneceram juntos. 1 - DETERMINE a velocidade do conjunto caminhão e automóvel logo após a colisão. 2 - RESPONDA se, em módulo, a força devido à colisão que atuou sobre o automóvel é maior, menor ou igual à aquela que atuou sobre o caminhão. JUSTIFIQUE sua resposta. V = 28 km/h, para a esquerda

  32. Uma bala de massa m e velocidade Vo atravessa, quase instantaneamente, um bloco de massa M, que se encontrava em repouso, pendurado por um fio flexível, de massa desprezível. Nessa colisão a bala perde ¾ de sua energia cinética inicial. Determine a altura h, alcançada pelo pêndulo.

  33. Conservação da Energia Mecânica do bloco M ao mover de A até B B VM A Conservação da Quantidade de Movimento: Considerando a bala:

  34. Exercícios 01 - Um corpo de 80kg cai da altura de 80m e, após bater no solo, retorna, atingindo a altura máxima de 20m. Qual o valor do coeficiente de restituição entre o corpo e o solo?

  35. 02 - Na figura representada, um homem de massa M está de pé sobre uma tábua de comprimento L, que se encontra em repouso numa superfície sem atrito. O homem caminha de um extremo a outro da tábua. Que distância percorreu a tábua em relação ao solo se sua massa é M/4 ?

  36. ANTES L DEPOIS D L - D Ex. 02

  37. 03 - No esquema a seguir, mA=1,0kg e mB=2,0kg. Não há atrito entre os corpos e o plano de apoio. A mola tem massa desprezível. Estando a mola comprimida entre os blocos, o sistema é abandonado em repouso. A mola distende-se e cai por não estar presa a nenhum deles. O corpo B adquire velocidade de 0,5m/s. Determine a energia potencial da mola no instante em que o sistema é abandonado livremente.

  38. 04 - Um móvel A de massa M move-se com velocidade constante V ao longo de um plano horizontal sem atrito. Quando o corpo B, de massa M/3, é solto, este se encaixa perfeitamente na abertura do móvel A. Qual será a nova velocidade do conjunto após as duas massas se encaixarem perfeitamente?

  39. 05 - Um trenó, com massa total de 250kg, desliza no gelo à velocidade de 10m/s. Se o seu condutor atirar para trás 50kg de carga à velocidade de 10m/s, qual será a nova velocidade do trenó?

  40. A B A B ANTES DEPOIS 06 - Um bloco, viajando com uma determinada velocidade, choca-se plasticamente com outro bloco de mesma massa, inicialmente em repouso. Determine a razão entre a energia cinética do sistema antes e depois do choque.

  41. 07 - O bloco I, de massa m e velocidade Vo, choca-se elasticamente com o bloco II, de mesma massa. Sendo g a gravidade local e desprezando-se os atritos, determine, em função de Vo e g, a altura h atingida pelo bloco II.

  42. B A Ex. 07 Conservação da Energia Mecânica do bloco II ao mover de A até B Para esse caso, a velocidade do bloco II após a colisão será a mesma do bloco I antes da colisão. A colisão foi elástica, havendo troca de velocidades.

  43. 08 - Um pequeno vagão, de massa 90kg, rola à velocidade de 10m/s, sobre um trilho horizontal. Num determinado instante cai verticalmente, de uma correia transportadora, sobre o vagão, um saco de areia de 60kg. Determine a velocidade do vagão carregado.

  44. 09 - A quantidade de movimento de uma partícula de massa 0,4kg tem módulo 1,2kg.m/s. Neste instante, qual a energia cinética da partícula é, em joules?

  45. 10 - Um carro de corrida de massa 800kg entra numa curva com velocidade 30m/s e sai com velocidade de igual módulo, porém numa direção perpendicular à inicial, tendo sua velocidade sofrido uma rotação de 90°. Determine a intensidade do impulso recebido pelo carro.

  46. m ANTES m DEPOIS 11 - Uma esfera de massa m e velocidade v colidiu frontalmente com um obstáculo fixo, retornando com a mesma velocidade em módulo. Qual foi a variação da quantidade de movimento da esfera?

  47. 12 - Uma bala de 0,20kg tem velocidade horizontal de 300m/s; bate e fica presa num bloco de madeira de massa 1,0kg, que estão em repouso num plano horizontal, sem atrito. Determine a velocidade com que o conjunto (bloco e bala) começa a deslocar-se.

  48. 13 - Em um plano horizontal sem atrito, duas partículas, A e B, realizam uma colisão unidimensional. Não considere o efeito do ar. A partícula A tem massa m e a partícula Btem massa M. Antes da colisão a partícula B estava em repouso e após a colisão a partícula A fica em repouso. Qual o coeficiente de restituição nesta colisão?

  49. 14 - Um pêndulo balístico de massa 2kg, atingido por um projétil de massa 10g com velocidade 402m/s, colide frontal e elasticamente com um bloco de massa 2,01kg. Após a colisão, o bloco desliza, sobre uma mesa, parando em 1,0s. Considerando g = 10m/s², determine o coeficiente de atrito entre a mesa e o bloco. Considere que o projétil se aloja no pêndulo.

  50. Ex. 14 Colisão entre a bala e o bloco No choque frontal e elástico entre corpos de mesma massa há troca de velocidades. Logo a velocidade inicial do bloco que se encontra sobre a mesa é: