1 / 112

A new definition for the dynamics

A new definition for the dynamics. G. Bertrand Laboratoire A 2 SI, ESIEE Institut Gaspard Monge – UMR UMLV/ESIEE/CNRS. A discrete approach. Let G = (V,E) be an (undirected) graph. We denote by Func (V) the family composed of all maps from V to Z. Pass value.

archibaldt
Download Presentation

A new definition for the dynamics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A new definition for the dynamics G. Bertrand Laboratoire A2SI, ESIEE Institut Gaspard Monge – UMR UMLV/ESIEE/CNRS ISMM 2005

  2. A discrete approach • Let G = (V,E) be an (undirected) graph. • We denote by Func (V) the family composed of all maps from V to Z. ISMM 2005

  3. Pass value • Let F be in Func (V). If п is a path, we set F(п) = Max{F(x); x  п}. • Let x, y in V. We set F(x,y) = Min {F(п); п  п(x,y)}, F(x,y) is the pass value between x and y. • Let X and Y be two subsets of V. We set F(X,Y) = Min{F(x,y); x  X and y  Y}. ISMM 2005

  4. Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 0 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

  5. Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 0 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

  6. Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 0 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

  7. Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 0 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005 F(X,Y) = 31

  8. Dynamics (M. Grimaud,1992) • Let X be a minimum for F. Let G(X) be the number such that: i) if X = Xmin, then G(X) = infinity; ii) otherwise, G(X) = Min {F(X,Y); for all minima Y such that F(Y) < F(X)}. • The dynamics of a minimum X is the number Dyn(X) = G(X) – F(X) ISMM 2005

  9. Dynamics ISMM 2005

  10. Dynamics ∞ ISMM 2005

  11. Dynamics ∞ ISMM 2005

  12. Dynamics ∞ ISMM 2005

  13. Dynamics ∞ ISMM 2005

  14. Dynamics ∞ ISMM 2005

  15. Dynamics ∞ ISMM 2005

  16. k-Separation • Let F be in Func (V) and let x and y be in V. We say that x and y are separated (for F) if F(x,y) > Max{F(x),F(y)}.We say that x and y are k-separated (for F) if x and y are separated and F(x,y) = k. ISMM 2005

  17. y x k-separation x and y are not separated 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 0 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

  18. y x k-separation x and y are 20-separated 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 0 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

  19. Separation • Let F and G be in Func (V) such that G  F.We say that G is a separationof F if, for all x,y in V, if x and y are k-separated for F, then x and y are k-separated for G. ISMM 2005

  20. Separation F ISMM 2005 G

  21. Separation F ISMM 2005 G

  22. Separation F K ISMM 2005 G

  23. Separation F ISMM 2005 G

  24. Separation F K ISMM 2005 G

  25. Separation F K ISMM 2005 G G is a separation of F

  26. Dynamics and separation Let G ≤ F (G being a minima extension of F) If G is a separation of F, then the dynamics of a minimum of G is the same than the dynamics of the corresponding minimum of F ISMM 2005

  27. Dynamics and separation Let G ≤ F (G being a minima extension of F). If G is a separation of F, then the dynamics of a minimum of G is the same than the dynamics of the corresponding minimum of F. The converse is not true ISMM 2005

  28. Dynamics: counter-example F ∞ ISMM 2005

  29. Dynamics: counter-example G ∞ ISMM 2005

  30. Ordered minima • Let F be in F (V). A minima ordering (for F) is a strict total order relation < on the minima of F. • Let X be a minimum for F. The pass valueof X for (F,<) is the number F(X,<) such that: i) if X = Xmin, then F(X,<) = infinity; ii) otherwise, F(X,<) = Min {F(X,Y); for all minima Y such that Y < X}. ISMM 2005

  31. Ordered minima 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 0 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

  32. Ordered minima F(.,<)=8 40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 0 2 8 6 5 5 20 3 2 3 40 F(.,<)=20 40 3 3 2 3 10 6 6 6 22 2 3 F(.,<)=30 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 F(.,<)=infty F(.,<)=31 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

  33. Ordered dynamics • The notion of ordered pass values leads to a new definition of the dynamics of a minimum: Dyn(X; F, <) = F(X, <) – F(X) ISMM 2005

  34. Ordered minima Dyn(.,<)=8-5 40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 0 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 Dyn(.,<)=20-0 40 6 6 40 6 11 11 11 25 4 4 4 40 Dyn(.,<)=30-2 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 Dyn(.,<)=31-3 40 40 40 40 40 40 40 40 40 40 40 40 40 Dyn(.,<)=infty ISMM 2005

  35. Theorem(ordered dynamics and separation) Let G ≤ F (G being a minima extension of F). Let < be a minima ordering for F. The map G is a separation of F if and only if, for each minimum X for F, we have Dyn(X; F, <) = Dyn(X; G, <) . ISMM 2005

  36. Dynamics: counter-example ∞ ISMM 2005

  37. Ordered minima F ISMM 2005

  38. Ordered minima F 2 3 ISMM 2005 1

  39. Ordered minima ∞ F 2 3 ISMM 2005 1

  40. Ordered minima ∞ F 2 3 ISMM 2005 1

  41. Ordered minima ∞ G 2 3 ISMM 2005 1

  42. Ordered minima F 1 2 ISMM 2005 3

  43. Ordered minima ∞ F 1 2 ISMM 2005 3

  44. Ordered minima ∞ F 1 2 ISMM 2005 3

  45. Ordered minima ∞ G 1 2 ISMM 2005 3

  46. Remark If all the minima of a function F are distinct and if the ordering of the minima of F is made according to the altitudes of the minima of F, then the ordered dynamics of a minimum is equal to the unordered dynamics of this minimum. ISMM 2005

  47. A tree associated to F and < F(.,<)=8 40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 0 2 8 6 5 5 20 3 2 3 40 F(.,<)=20 40 3 3 2 3 10 6 6 6 22 2 3 F(.,<)=30 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 F(.,<)=0 F(.,<)=31 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

  48. Theorem(minimum spanning tree) Let F be in F (V) and let < be a minima ordering for F. Let T be a tree associated to F and <. Let G’ be the complete graph the vertices of which are the minima of F, an edge being labeled by the corresponding pass value. The tree T is a minimum spanning tree of G’. ISMM 2005

  49. Conclusion ISMM 2005 Dyn > 22

  50. Conclusion ISMM 2005 => Ordering the minima with arbitary criteria

More Related