1 / 22

Python Crash Course Accuracy

Python Crash Course Accuracy. 3 rd year Bachelors V1.0 dd 04-09-2013 Hour 7. Accuracy.

anoush
Download Presentation

Python Crash Course Accuracy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Python Crash CourseAccuracy 3rd year Bachelors V1.0 dd 04-09-2013 Hour 7

  2. Accuracy Our society depends on software. This may be an obvious statement. Software bugs cost the U.S. economy 60 billion dollars each year. It is stated that a third of that cost could be eliminated by improved testing. Bugs can cause accidents, also in science, although in astronomy people usually do not end up in a hospital. In this lecture we focus on floating point numbers. It is important to realize that these numbers are represented by a limited number of bits and therefore are limited to a certain precision. First we discuss three sources of error: • Rounding, • Cancellation and • Recursion.

  3. Rounding • Calculations use a fixed number of significant digits. After each operation the result usually has to be rounded. The error is less than (or equal) half a unit represented by the last bit of the internal representation. In loops these errors can propagate and grow. def step( a, b, n ): """ Function to calculate intermediate steps in an interval """ h = (b-a) / n x = a print "%.18f" % (x) while (x < b): x = x + h print "%.18f" % (x) step (1.0, 2.0, 3) 1.000000000000000000 1.333333333333333259 1.666666666666666519 1.999999999999999778 2.333333333333333037

  4. Rounding • Enhancing the accuracy • Replacing the condition in the while statement with a better one. def step( a, b, n ): """ Function to calculate intermediate steps in an interval """ eps = 1.0e-8 h = (b-a) / n x = a print "%.18f" % (x) while (abs(x – b) > eps): x = x + h print "%.18f" % (x) step(1.0, 2.0, 3) 1.000000000000000000 1.333333333333333259 1.666666666666666519 1.999999999999999778

  5. Rounding • Enhancing the accuracy • Replacing the while with a for loop using an integer. def step( a, b, n ): """ Function to calculate intermediate steps in an interval """ eps = 1.0e-8 h = (b-a) / n x = a print "%.18f" % (x) for i in range(0,n+1): x = x + h print "%.18f" % (x) step(1.0, 2.0, 3) 1.000000000000000000 1.333333333333333259 1.666666666666666519 1.999999999999999778

  6. Cancellation Cancellation occurs from the subtraction of two almost equal numbers. If you subtract two numbers with approximate equal values then the errors are also comparable and in the subtraction we get a small value with a relatively big error (which can be demonstrated with simple error analysis). This effect is demonstrated when you try to calculate the roots of the equation: This equation has two analytical expressions for finding the roots: With a=1.0e-5, b = 1.0e3 and c = 1.0e3

  7. Cancellation • Consider the following code import numpy def sqrt_single(x): X = x.astype('f') # or use: X = numpy.cast['f'](x) return numpy.sqrt(X) v = numpy.array([1.0e-5, 1.0e3, 1.0e3], 'f') print "SINGLE precision type: ", v.dtype a = v[0]; b = v[1]; c = v[2] sq = sqrt_single(b*b-4.0*a*c) xa1 = (-b + sq)/(2.0*a) xa2 = (-b - sq)/(2.0*a) print "\nx1,x2: ", xa1,xa2 print "We expect: x1*x2-c/a=0, but result is:", xa1*xa2-c/a print "x1 from c/(a*x2)=", c/(a*xa2) xb1 = (-2.0*c) / (b + sq) xb2 = (-2.0*c) / (b - sq) print "\nx1,x2: ", xb1,xb2 print "We expect x1*x2-c/a=0, but result is:", xb1*xb2-c/a print "x2 from c/(a*x1)", c/(a*xb1) print "\nsqrt should be 999.99998, but result is: %12f "% sq9

  8. Cancellation • And the result is • This seems strange. Two analytical equivalent formulas do not generate the same solution for x1 and x2. This is the effect of cancellation. Note that the value of 4*|ac| is small compared to b^2. The square root results in a value near b and the error in the square root will dominate. The cancellation effects occur when we subtract b and a number near b. The correct roots for the single precision approach are: • x1 = -1 • x2 = -1.0e8 SINGLE precision type: float32 x1,x2: -3.05175788959 -100000002.526 We expect: x1*x2-c/a=0, but result is: 205175796.669 x1 from c/(a*x2)= -1.0 x1,x2: -1.0 -32768000.0 We expect x1*x2-c/a=0, but result is: -67232000.0 x2 from c/(a*x1) -100000002.526 sqrt should be 999.99998, but result is: 999.999939

  9. Recursion Many scientific calculations use a new entity based on a previous one. In such iterations the errors can accumulate and destroy your computation. In another task we will discuss Euler's method to solve a first order differential equation y'=f(x,y). Values for y are calculated with yn+1 = yn + h.f(x,y). For small h the method is stable but the error increases.

  10. Recursion, The problem: to find a numerical approximation to y(t) where Typically we use a fixed step size, i.e.,hn= h = constant

  11. Recursion def f(t,y): value = y+t return (value) def euler(t0,y0,h,tmax): t=t0; y=y0; td=[t0]; yd=[y0]; while t<tmax: y = y + h*f(t,y) yd.append(y) t=t+h td.append(t) return(td,yd) (tvals,yvals) = euler(0,1,.1,1) for uv in zip(tvals, yvals): print uv[0],uv[1]

  12. Real life examples • Software causing severe problems • Patriot missile. Time conversion of integer to float with error therefor missing target. Tested only for < 100 hours. • Truncation of amounts in stock market transactions and currency conversions. • Exploding Ariane 5 rocket in 1996 due to limited size of integer memory storage. • Illegal input not handled correctly: USS Yorktown three hours no propulsion due to database overflow.

  13. Practical example

  14. Practical examples

  15. Random module >>> import random >>> random.seed() >>> random.randint(0,10) 9 >>> random.randint(0,10) 3 >>> random.randint(0,10) 6 >>> random.randrange( 0, 10, 2 ) 6 >>> random.sample(xrange(100),10) [18, 81, 22, 57, 78, 77, 15, 25, 92, 93] >>> random.random() 0.81241742358112989 >>> random.random() 0.54302903272916259 >>> random.uniform(99.9,101.9) 100.44371626283052

  16. Python’s random number generator Random numbers import random for i in range(5): # random float: 0.0 <= number < 1.0 print random.random(), # random float: 10 <= number < 20 print random.uniform(10, 20), # random integer: 100 <= number <= 1000 print random.randint(100, 1000), # random integer: even numbers in 100 <= number < 1000 print random.randrange(100, 1000, 2) 0.946842713956 19.5910069381 709 172 0.573613195398 16.2758417025 407 120 0.363241598013 16.8079747714 916 580 0.602115173978 18.386796935 531 774 0.526767588533 18.0783794596 223 344 Warning: The random number generators provided in the standard library are pseudo-random generators. While this might be good enough for many purposes, including simulations, numerical analysis, and games, but it’s definitely not good enough for cryptographic use.

  17. numpy’s random number generator Random numbers

  18. numpy’s random number generator, a few examples Random numbers The numpy.random library contains a few extra probability distributions commonly used in scientific research, as well as a couple of convenience functions for generating arrays of random data.

  19. Random • Numpy random number generator • Pseudo randomness >>> import numpy.random as nr >>> nr.rand(10) array([ 0.21440458, 0.07646705, 0.24493176, 0.33086711, 0.35931123, 0.63563963, 0.73611493, 0.28994467, 0.28596076, 0.10779166]) >>> import numpy.random as nr >>> nr.rand(3,2) array([[ 0.65159297, 0.78872335], [ 0.09385959, 0.02834748], [ 0.8357651 , 0.43276707]]) >>> nr.seed([10]) >>> nr.rand(3) array([ 0.57140259, 0.42888905, 0.5780913 ]) >>> nr.seed([10]) >>> nr.rand(3) array([ 0.57140259, 0.42888905, 0.5780913 ])

  20. Random generators The normal distribution, also called Gaussian distribution, is an extremely important probability distribution in many fields. It is a family of distributions of the same general form, differing in their location and scale parameters: the mean ("average") and standard deviation ("variability"), respectively. >>> nr.normal(10.0,2.0,10) array([ 9.10795834, 7.17735118, 9.99187537, 8.89229777, 11.04096991, 12.09645086, 12.31425147, 10.21820379, 10.4381389 , 7.71719838])

  21. Random generators In probability theory and statistics, the Poisson distribution is a discrete probability distribution. This random number counts the number of successes in n independent experiments (where the probability of success in each experiment is p) in the limit as n -> infinity and p -> 0 gets very small such that lambda = np >= 0 is a constant. >>> samples = nr.poisson(10,100) >>> samples array([ 9, 17, 11, 12, 8, 5, 13, 8, 10, 13, 5, 8, 11, 10, 10, 8, 7, 5, 9, 10, 8, 12, 16, 4, 8, 8, 15, 4, 9, 9, 8, 12, 17, 9, 10, 8, 12, 16, 8, 8, 12, 15, 16, 12, 15, 10, 17, 9, 8, 10, 10, 13, 12, 8, 11, 9, 14, 14, 11, 11, 9, 14, 4, 4, 12, 18, 8, 11, 16, 11, 11, 5, 6, 13, 13, 11, 7, 8, 11, 11, 14, 9, 6, 11, 13, 10, 8, 10, 10, 7, 11, 7, 13, 11, 16, 9, 9, 13, 11, 7])

  22. End Introduction to language

More Related