slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Kapittel 3: Relevant risiko og kapitalkostnad PowerPoint Presentation
Download Presentation
Kapittel 3: Relevant risiko og kapitalkostnad

Loading in 2 Seconds...

play fullscreen
1 / 34

Kapittel 3: Relevant risiko og kapitalkostnad - PowerPoint PPT Presentation


  • 322 Views
  • Uploaded on

Kapittel 3: Relevant risiko og kapitalkostnad. Kapittel 3 : Oversikt Effisiente porteføljer Kapitalverdimodellen Kapitalkostnad for nye prosjekter Bedriftsdiversifisering Informasjonseffisiens 6. Risikoanalyse med tradisjonelle metoder - Følsomhetsanalyse - Scenarioanalyse

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Kapittel 3: Relevant risiko og kapitalkostnad' - aliya


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide2

Kapittel 3:

Relevant risikoogkapitalkostnad

slide3

Kapittel 3: Oversikt

  • Effisiente porteføljer
  • Kapitalverdimodellen
  • Kapitalkostnad for nye prosjekter
  • Bedriftsdiversifisering
  • Informasjonseffisiens
  • 6. Risikoanalyse med tradisjonelle metoder
    • - Følsomhetsanalyse
    • - Scenarioanalyse
    • - Simulering
    • - Beslutningstrær
slide4

A

E

D

C

B

F

1. Effisiente porteføljer

  • Effisientportefølje
  • Girmaksimalavkastning for en gittrisiko, eller minimal risiko for en gittavkastning
slide5

A

E

D

C

B

F

1. Effisiente porteføljer (forts.)

  • Effisiente porteføljer: Linjen B-C-D-E viser et effisient sett av porteføljer
  • Hvilke portefølje bør du velge? Avhenger av risikoholdning;

grad av risikoaversjon

slide6

E

C

rf

B

1. Effisiente porteføljer (forts.)

  • Hva hvis du kan investere risikofritt (dvs. Std = 0) til rf i

tillegg (statsobligasjoner, bankinnskudd o.l.)?

Linjen rf – C er ikke

effisient

slide7

E

M

C

rf

B

1. Effisiente porteføljer (forts.)

  • Hvor legger investor seg på linjen fra rf gjennom M?

Avhenger av grad av risikoaversjon

rf - M: Kapitalmarkedslinjen

slide8

M

rf

1. Effisiente porteføljer (forts.)

II

Eksempel:

E(rm) = 20% Std(rm) = 10% rf= 3%

Investor I ønsker 75% plassert risikofritt

I

Forventet avkastning:

Risiko:

slide9

1. Effisiente porteføljer (forts.)

M

Eksempel:

E(rm) = 20% Std(rm) = 10% rf= 3%

Investor II ønsker 25% forventetavkastning – erdettemulig?

rf

Forventet avkastning:

Risiko:

Investor tar opp et låntilsvarende 30% aveiendelene for å investere 130% avegenkapitalenirm

To-fonds resultatet

slide10

M

rf

1. Effisiente porteføljer (forts.)

To-fond resultatet

  • Alle investorer bestemmer først den optimale porteføljen av

risikofylte investeringer, dvs. M. Denne er identisk for alle

  • Beste kombinasjon av risikofri investering og risikofylt portefølje

(M) bestemmes deretter i samsvar med personlig risikoholdning

slide11

M

rf

1. Effisiente porteføljer (forts.)

E(rp) = w . rf + (1-w) . E(rm)

Vi kan sette inn for w og får (se B&M s. 89):

MEN:

Hvordan finner vi sammensetningen av porteføljen M, som gir E(rm) og Std(rm)?

Hvilken sammenheng er det mellom relevant risiko og forventet avkastning? (Husk: Relevant risiko er ikke Std, men samvariasjonen med markedet; b.)

Kapitalverdimodellen (KVM; CAPM)

slide12

2. Kapitalverdimodellen

  • Vi skal finne forventet avkastning (E(rp)) for et usikkert prosjekt.

I et marked i likevekt vil alle investorer velge markedsporteføljen

(M). Dette er en verdiveid portefølje av alle selskapenes aksjer.

  • Forholdet mellom risiko og forventet avkastning:

Alle investorer sprer sine investeringer mest mulig for å fjerne usystematisk risiko. De eier derfor en kombinasjon av den usikre markedsporteføljen fra aksjemarkedet og en risikofri komponent (sparing eller låning). Dette gir investor høyest mulig forventet avkastning for gitt risiko, eller lavest risiko for gitt forventet avkastning

Investors grad av risikoaversjon avgjør hvilken andel som spares/lånes risikofritt. Sammensetningen av aksjeporteføljen (M) er likevel den samme for alle (tofondsresultatet)

  • Hva betyr dette for prisingen av aksjer i et marked i likevekt, dvs. for

forholdet mellom en aksjes risiko og forventede avkastning?

slide13

E(rj)

rf .(1-s)

bj

1,0

2. Kapitalverdimodellen (forts.)

Det viser seg:

KVM for egenkapital

M

E(rm)

Verdipapirmarkedslinjen (KVM)

slide14

2. Kapitalverdimodellen (forts.)

  • Forventetavkastning (E(rj)) for et prosjektersummenavrisikofrirente
  • etterskatt (rf.(1-s)) ogprosjektetsrisikopremie(bj . [E(rm)- rf.(1-s)])
  • Prosjektetsrisikopremie (bj. [E(rm)- rf.(1-s)]) erproduktetavantall
  • enheterrelevant risikoiprosjektet (bj) ogkostnadenpr. risikoenhet
  • (E(rm)- rf.(1-s); markedetsrisikopremie)
  • Risikofrirente (rf) ogmarkedetsrisikopremie, (E(rm)- rf.(1-s)), er
  • makrostørrelser, dvs. felles for alleprosjekter. bj ogeventuelt s er
  • spesifikke for detenkelteselskap
  • Deter et lineærtforholdmellom relevant risiko (bj) ogforventet
  • avkastning (E(rj)). Vinkelkoeffisientenermarkedetsrisikopremie
  • (E(rm)- rf.(1-s)). Konstantleddet er rf.(1-s)
  • KVM inneholder kun systematiskrisiko (usystematiskrisikoerirrelevant)
  • For effisienteporteføljer (korrelasjon med M = 1) er KVM detsamme
  • somkapitalmarkedslinjen
slide15

2. Kapitalverdimodellen (forts.)

  • KVM i denne versjonen viser forventet avkastning for egenkapital

Markedsavkastning (Oslo Børs) og risikofri rente etter skatt, 1975-2010

slide16

2. Kapitalverdimodellen (forts.)

  • KVM som likevektsmodell sier hva forventet avkastning

skal være. Vi kan alternativt se på KVM som en modell

som beregner kapitalkostnaden (k) for et prosjekt, dvs.

hva et nytt prosjekt minst må gi for at ikke selskapsverdien

skal falle når selskapet investerer i prosjektet

Eksempel: rf = 3 %, s = 0,28 E(rm) = 7%

dvs.: rf . (1-s) = 2 % (avrundet)

Dermed:

kE = 0,02 + bE . [0,07 – 0,02]

kE = 0,02 + bE. 0,05

Risikofri kapitalkostnad for egenkapital er 2 %.

Med bE =1 er egenkapitalkostnaden 7 %.

slide17

2. Kapitalverdimodellen (forts.)

KVM for gjeld:

Før skatt

Eksempel:

kG =

HvisbG = 0,3:

kG =

  • Dette er gjeldskostnad (kG) før skatt for selskapet (også lik forventet avkastning før investorskatt på det lån investor gir selskapet)
slide18

2. Kapitalverdimodellen (forts.)

Totalkapitalkostnad etter skatt:

wE = E/(E +G) wG = G/(E +G) = 1-wE

E – Egenkapital (markedsverdi)

wE – Egenkapitalandel

s – Selskapsskattesats

G – Gjeld (markedsverdi)

wG – Gjeldsandel

Eksempel:bE = 1,2 bG = 0,1 rf = 3% s = 28%

Markedets risikopremie = 5%

G = 400, EK = 600

wG = 400/1000 = 0,4 wE = 600/1000 =0,6

slide19

2. Kapitalverdimodellen (forts.)

EK-kostnad etter skatt:

Gjeldskostnad før skatt:

slide20

2. Kapitalverdimodellen (forts.)

Eksempel: (forts.):

  • Totalkapitalkostnad
  • Alternativt via bT(totalkapitalbeta)og KVM:
  • Totalkapitalkostnad
slide21

3

0

1

2

4

5

tid

w

w

w

w

w

-60

20

20

20

20

20

3. Kapitalkostnad for nye prosjekter

Eksempel: Du vurderer et nytt prosjekt (kjøp av selskap):

rf = 3%, bT = 1,1 s = 0,28; markedets risikopremie etter skatt er 5%, 40% EK

Forventet kontantstrøm:

Dermed:

  • NV7,7 %=

Husk:

  • Vi bruker prosjektets kapitalkostnad (hensyntatt prosjektets

risiko), ikke bedriftens gjennomsnittlige kapitalkostnad

  • Feil kan oppstå dersom bedriftens kapitalkostnad benyttes, særlig

dersom virksomheten er variert (konglomerat)

slide22

Kapitalkostnad ifølge KVM

B

E(avk.),B

A

Bedriftens kapitalkostnad

E(avk.),A

bA

bB

3. Kapitalkostnad for nye prosjekter

Beslutningsfeil når bedriftens gjennomsnittlige kapitalkostnad brukes på nye prosjekter

b for eksisterende virksomhet

slide23

4. Bedriftsdiversifisering

1. I et perfekt marked: Investor kan diversifisere like godt som selskapet

I praksis: Investor kan diversifisere mye billigere enn selskapet

2. Når det er billigere for investor å diversifisere enn for bedriften e bedriften bør ikke diversifisere gjennom å spre seg over flere virksomhetsområder

3. Bedriften bør konsentrere seg om områder hvor den har

konkurransefortrinn (spesialisere; ikke diversifisere)

Konglomeratrabatt i Norge: 6 – 25% av selskapsverdien

4. Tilfeller hvor det likevel kan være lønnsomt for bedriften å diversifisere:

- økt innkjøpsvolum (effektivitet)

- markedsmakt (monopolfordel)

- bedre utnyttelse av kompetanse (synergi)

slide24

5. Informasjonseffisiens

Dagens pris reflekterer all den informasjonen som ligger i aksjens tidligere prisutvikling

Svak effisiens

Dagens pris reflekterer all offentlig informasjon

Halvsterk effisiens

Sterk effisiens

Dagens pris reflekterer all informasjon, også innsideinformasjon

slide25

5. Informasjonseffisiens (forts.)

  • Hvis effisiens ikke holder: Reduser diversifisering og konsentrer

deg om de enkeltselskaper hvor du har informasjon

  • Teknisk analyse: Forutsetter at markedet ikke er effisient på svak form
  • Fundamentalanalyse: Forutsetter at markedet ikke er halvsterkt effisient
  • Effekt av aksjetips/råd i tidsskrift (eks. Kapital): Hvis

aksjekursen reagerer

a) Enten effisient reaksjon på ny informasjon

(“Kapital bruker ikke- offentlig info”), eller

b) Markedet er ineffisient

(“Markedet reagerer på at Kapital gjenbruker kjent info”)

  • Innside-info: Synes mulig å tjene ekstra på bruk av innsideinfo i

utlandet, m.a.o. ikke sterk effisiens. Hypotesen er empirisk

forkastet i Norge

slide26

5. Informasjonseffisiens (forts.)

  • Funn fra de senere år som setter spørsmålstegn ved svak/halvsterk effisiens (anomalier):

1. Størrelseseffekten – jo mindre selskap, desto høyere avkastning

2. P/B–effekten – jo lavere P/B (pris/bok), desto høyere avkastning

3. P/E–effekten – jo lavere P/E (“price/earnings”), desto høyere

avkastning

4. Momentumeffekten – jo høyere avkastning i fjor, desto høyere

avkastning i år

5. Januareffekten – høyest avkastning i januar

Men: Straks disse effektene blir kjent, ser det ut til at handel fjerner dem

slide27

6. Risikoanalyse med tradisjonelle metoder: Følsomhetsanalyse

Eksempel:

Analyserer lønnsomhetseffekter av endrede prisforutsetninger

Et prosjekt med levetid på 5 år har en konstant årlig kontantstrøm Avkastningskravet er 5 % og basisprisen er 100

slide28

Faste utbetalinger

Pris

Volum

Levetid

6. Risikoanalyse med tradisjonellemetoder:

Følsomhetsanalyse

Eksempel (forts.)

Stjernediagram: Endring i nåverdi ved prosentvis endring i forutsetninger

slide29

Høy risiko

Lav risiko

6. Risikoanalyse med tradisjonelle metoder: Følsomhetsanalyse

Begrensninger

Partiell: Håndterer kun endring i én variabel om gangen. Scenarioanalyse tar flere variable

Taus om sannsynlighet for avvik

Tiltak ved avvik behandles ikke

Er variabelen en systematisk eller usystematisk risikokilde?

Bruker risikofri rente selv om kontantstrømmen ikke er sikker.

Kan heller ikke bruke risikojustert rente

slide30

1

2

3

4

6. Risikoanalyse med tradisjonelle metoder: Simulering

  • Metode:

Sannsynlighetsfordelte kontantstrømmer

Estimere data om prosjektet

Gjentatte trekninger og utregninger

Sannsynlighetsfordelte nåverdier

  • Kan ta hensyn til ulike sannsynligheter for inngangsdata
  • Kan ta alle slags avhengigheter mellom inngangsdata
  • Antall scenarier kan være stort
  • Supplerer følsomhets- og scenarioanalysen med annen type resultater (sannsynlighetsfordelinger ved høyt antall scenarier)
  • Viser ikke følsomhet for hver enkelt variabel
  • Gir sammen med følsomhetsanalyse god intuitiv info
  • Vanskelig å bestemme kapitalkostnad (som ved følsomhets- og scenarioanalyse)
slide31

6. Risikoanalyse med tradisjonelle metoder: Beslutningstrær

  • Strukturering av sekvensielle beslutninger for å finne optimal strategi

Eksempel - diamantgruve

  • Utbygging av diamantgruve med testgraving i desember 2012.
  • Sannsynlighet for positivt/negativt resultat av testgravingen er 80/20%
  • Ved positivt resultat av testgravingen er det 70% sannsynlighet for at forekomstene er store. Ved negativt resultat er det bare 20% sannsynlighet for at forekomstene er store
  • Eventuell utbygging av gruva skjer i desember 2012 og koster 5.000. Dersom forekomstene er store, kan man selge gruva i desember 20013 for 9.000. Dersom forekomstene er små, kan den selges for 4.000
  • Kapitalkostnaden for prosjektet er beregnet til 10%
slide32

6. Risikoanalyse med tradisjonelle metoder: Beslutningstrær

  • Strukturering av sekvensielle beslutninger for å finne optimal strategi

Eksempel: Diamantgruve

Des. 12

Des. 12

Des. 13

Des. 13

Store: 70%

(7.500/1,1)-5.000=

9.000

Bygg

B

Små: 30%

-5.000

4.000

1

0

Pos.:

Ikke bygg

80%

Store: 20%

(5.000/1,1)-5.000=

Bygg

A

9.000

C

Små: 80%

-5.000

4.000

Neg.:

20%

2

0

Ikke bygg

slide33

Oppsummering

  • Effisient portefølje:Gir maksimal forventet avkastning for en gitt risiko, eller minimal risiko for en gitt forventet avkastning.
  • To-fond resultatet: I et perfekt marked vilalleinvestorerfordele
  • sine investeringermellom en risikofriinvestering (ellerlån) og
  • markedsporteføljen. Vekteneimarkedsporteføljener den samme
  • for alleinvestoreruansett grad avrisikoaversjon
  • Kapitalverdimodellen: For EK:

For gjeld:

  • Vi brukerprosjektetskapitalkostnad (hensyntattrisiko); ikke
  • bedriftens
  • I praksis kan investor diversifisere mye billigere enn selskapet
slide34

Oppsummering, forts.

  • Informasjonseffisiens:
  • Svak: Dagens pris reflekterer all informasjon som ligger i aksjens tidligere prisutvikling

Halvsterk: Dagens pris reflekterer all offentlig informasjon

Sterk: Dagens pris reflekterer all informasjon, også

innsideinformasjon

  • Følsomhetsanalyse:Studerer effekten på prosjektets

lønnsomhet av endringer i variabler som påvirker lønnsomheten

  • Scenarioanalyse: Flerdimensjonal følsomhetsanalyse
  • Simulering: Produserer sannsynlighetsfordelte kontantstrømmer

og lønnsomhetsmål basert på gjentatte trekninger og utregninger

  • Beslutningstrær: Strukturering av sekvensielle beslutninger for å finne optimal strategi
  • Problemer med tradisjonelle metoder: Vanskelig å fastsette

kapitalkostnad