1 / 5

# Bab 10 Analisis Regresi dan Korelasi - PowerPoint PPT Presentation

Bab 10 Analisis Regresi dan Korelasi. A.Regresi artinya hubungan antara dua variabel yaitu variabel terikat ( Y ) dan Variabel Bebas ( X )

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about ' Bab 10 Analisis Regresi dan Korelasi' - sinjin

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

### Bab 10 AnalisisRegresidanKorelasi

A.Regresiartinyahubunganantaraduavariabelyaituvariabelterikat ( Y ) danVariabelBebas ( X )

I.Regresi Linier sederhana

Formulasinyaadalah : Y = a + bX , dimana :

Y = Variabelterikat/dependent variabel

X = VariabelBebas

b = Koefisienregresi

a = Konstanta

II.MetodePerhitungan

b = n ∑ XY - ∑X ∑Y / n ∑ X2 - ( ∑X )2

a = ∑ Y - b ∑ X / n atau a = Y rata-rata – b. X rata-rata

III.Kesalahan Baku ( standard Error ) Regresi

Se2 = ∑ y2 – b2 ∑ x2 / n - 2

Sa2 = Se2 ( 1/n + X2/ ∑x2 )

Sb2 = Se2 / ∑ x2

Keterangan : ∑ x2 = ∑ X2 – (∑ X)2 / n

∑ y2 = ∑ Y2 - ( ∑ Y)2 / n

y, x = variabelkecil, dapatdicari

Y, X = variabelbesar, lihattabel

Sa = kesalahanbakuregresi a

Sb = kesalahandakuregresi b

Kekuatanhubunganantaravariabelterikat (y) denganvariabel

bebas (x)

Ukurankekuatanhubungantersebutdinamakan

Koefisienkorelasi ( r )

Batasannilaikoefisienkorelasi (r)

1.Jika r hasilnyaantaralebihbesar 0 sd 0,50 disebut

kuatpositif. Sedang r lebihbesar 0,50 sd <1 disebut

lemahpositip

2. Jika r hasilnyaantaralebihkecil 0 sd – 0,50 disebut

Lemahnegatif. Sedang r lebihkecil 0,50 sd > -1 disebut

Kuatpositif

Formulasinyaadal.ah r = ∑ x y / (√∑x2 ). (√∑y2)

Dimana : ∑ x y = ∑ X Y – (∑ X ) . (∑ Y) / n