1 / 63

Proteins

Proteins. What is a protein?. A protein is a molecule consisting of amino acids linked in a linear chain through peptide bonds. Protein primary structure. Peptide formation. There are many kinds of proteins. Structural--determine shape and function of cells

Download Presentation

Proteins

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Proteins

  2. What is a protein? • A protein is a molecule consisting of amino acids linked in a linear chain through peptide bonds.

  3. Protein primary structure

  4. Peptide formation

  5. There are many kinds of proteins. • Structural--determine shape and function of cells • Enzymes--speed up chemical reactions • Ligand-binding--bind small molecules and transport them to other locations

  6. Cells • muscle • nerve

  7. Structural proteins • collagen -- in connective tissue such as cartilage • elastin -- in connective tissue such as cartilage • keratin--in hair and nails • actin -- in muscle • myosin -- in muscle to generate mechanical forces

  8. Enzymes • glucose isomerase--convert glucose into fructose • rennin--make cheese • cellulase--break down cellulose into sugars to make ethanol • amylase--detergent for machine dish washing

  9. Ligand-binding proteins. • hemoglobin--transport oxygen from the lungs • antibodies--bind foreign substances for destruction

  10. The string of amino acids tends to “fold” into a shape.

  11. Hemoglobin structure

  12. Heart of Steel (Hemoglobin) by Julian Voss-Andreae

  13. Protein views (Triose phosphate isomerase)

  14. Visualizing proteins

  15. Amino acids • There are 20 different standard amino acids • The different amino acids differ in chemical properties.

  16. Amino Acid 3-Letter 1-Letter Polarity Acidity Hydrophobicity index • Alanine Ala A nonpolar neutral 1.8 • Arginine Arg R polar basic (s) -4.5 • Asparagine Asn N polar neutral -3.5 • Aspartic acid Asp D polar acidic -3.5 • Cysteine Cys C nonpolar neutral 2.5 • Glutamic acid Glu E polar acidic -3.5 • Glutamine Gln Q polar neutral -3.5 • Glycine Gly G nonpolar neutral -0.4 • Histidine His H polar basic (w) -3.2 • Isoleucine Ile I nonpolar neutral 4.5 • Leucine Leu L nonpolar neutral 3.8 • Lysine Lys K polar basic -3.9 • Methionine Met M nonpolar neutral 1.9 • Phenylalanine Phe F nonpolar neutral 2.8 • Proline Pro P nonpolar neutral -1.6 • Serine Ser S polar neutral -0.8 • Threonine Thr T polar neutral -0.7 • Tryptophan Trp W nonpolar neutral -0.9 • Tyrosine Tyr Y polar neutral -1.3 • Valine Val V nonpolar neutral 4.2

  17. Hydrophobicity index. • The larger the index, the stronger the tendency to be internal in the protein; the lower the index, the stronger the tendency to appear near the protein surface. • Amino acids with high index are called hydrophobic; with low index are called hydrophilic.

  18. What is the shape of the protein? • This is the “protein folding problem.” • The geometry and chemistry of the parts of the protein determine how it behaves in the cell.

  19. DNA • DNA is deoxyribose nucleic acid. • It occurs as long molecules in a double helix.

  20. DNA is a long molecule in a double helix

  21. What makes DNA? • DNA consists of sequences of nucleotides. • There are 4 kinds of nucleotide: • Adenine (A), Cytosine (C), Guanine (G), and Thymine (T)

  22. Matching • Each A has weak (“hydrogen”) bonds with T on the other chain. • Each C has weak (“hydrogen”) bonds with G on the other chain.

  23. A single chain carries the information • For example, the two strings might be ACGGTCAG TGCCAGTC • Hence all the information is in the order of A, C, G, T in one of the chains. • We write DNA as a (long) string of A, C, G, T for example AGGCTACATAG…

  24. Human DNA • Humans have 46 chromosomes. • Each chromosome is essentially a double helix of DNA, with variable numbers of nucleotides, from 50,000,000 to 250,000,000 base pairs. • There are a total of about 2,860,000,000 nucleotide pairs.

  25. Genes • A gene is a portion of the DNA that tells how to make a protein.

  26. DNA for beta hemoglobin • ATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTAA

  27. Amino Acid 3-Letter 1-Letter Polarity Acidity Hydrophobicity index • Alanine Ala A nonpolar neutral 1.8 • Arginine Arg R polar basic (s) -4.5 • Asparagine Asn N polar neutral -3.5 • Aspartic acid Asp D polar acidic -3.5 • Cysteine Cys C nonpolar neutral 2.5 • Glutamic acid Glu E polar acidic -3.5 • Glutamine Gln Q polar neutral -3.5 • Glycine Gly G nonpolar neutral -0.4 • Histidine His H polar basic (w) -3.2 • Isoleucine Ile I nonpolar neutral 4.5 • Leucine Leu L nonpolar neutral 3.8 • Lysine Lys K polar basic -3.9 • Methionine Met M nonpolar neutral 1.9 • Phenylalanine Phe F nonpolar neutral 2.8 • Proline Pro P nonpolar neutral -1.6 • Serine Ser S polar neutral -0.8 • Threonine Thr T polar neutral -0.7 • Tryptophan Trp W nonpolar neutral -0.9 • Tyrosine Tyr Y polar neutral -1.3 • Valine Val V nonpolar neutral 4.2

  28. DNA determines the order of amino acids • ATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTAA

  29. Primary structure for beta hemoglobin--the order • MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

  30. Hemoglobin structure

  31. How does DNA determine the order of amino acids? • Three successive nucleotides form a “codon.” • Different codons stand for different amino acids.

  32. Translating codons • Ala/A GCT, GCC, GCA, GCG Leu/L TTA, TTG, CTT, CTC, CTA, CTG • Arg/R CGT, CGC, CGA, CGG, AGA, AGG Lys/K AAA, AAG • Asn/N AAT, AAC Met/M ATG • Asp/D GAT, GAC Phe/F TTT, TTC • Cys/C TGT, TGC Pro/P CCT, CCC, CCA, CCG • Gln/Q CAA, CAG Ser/S TCT, TCC, TCA, TCG, AGT, AGC • Glu/E GAA, GAG Thr/T ACT, ACC, ACA, ACG • Gly/G GGT, GGC, GGA, GGG Trp/W TGG • His/H CAT, CAC Tyr/Y TAT, TAC • Ile/I ATT, ATC, ATA Val/V GTT, GTC, GTA, GTG • START ATG STOP TAG, TGA, TAA

  33. DNA for beta hemoglobin • ATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTAA

  34. Primary structure for beta hemoglobin • MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

  35. Hemoglobin structure

  36. The order of amino acids is important • Consider what may happen when the “wrong” amino acid is in a certain position.

  37. Primary structure for beta hemoglobin • MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

  38. Sickle cell anemia beta hemoglobin • MVHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

  39. Amino Acid 3-Letter 1-Letter Polarity Acidity Hydrophobicity index • Alanine Ala A nonpolar neutral 1.8 • Arginine Arg R polar basic (s) -4.5 • Asparagine Asn N polar neutral -3.5 • Aspartic acid Asp D polar acidic -3.5 • Cysteine Cys C nonpolar neutral 2.5 • Glutamic acid Glu E polar acidic -3.5 • Glutamine Gln Q polar neutral -3.5 • Glycine Gly G nonpolar neutral -0.4 • Histidine His H polar basic (w) -3.2 • Isoleucine Ile I nonpolar neutral 4.5 • Leucine Leu L nonpolar neutral 3.8 • Lysine Lys K polar basic -3.9 • Methionine Met M nonpolar neutral 1.9 • Phenylalanine Phe F nonpolar neutral 2.8 • Proline Pro P nonpolar neutral -1.6 • Serine Ser S polar neutral -0.8 • Threonine Thr T polar neutral -0.7 • Tryptophan Trp W nonpolar neutral -0.9 • Tyrosine Tyr Y polar neutral -1.3 • Valine Val V nonpolar neutral 4.2

  40. Simple model • Pretend there are only 2 kinds of amino acid--H and P. • H stands for “hydrophobic”. • Pretend that they must be placed on a grid. • Example: HHPPPPPPPHH

  41. A folding of HHPPPPPPPHH

  42. Another folding of HHPPPPPPPHH

  43. Energy • HH has energy -1. • PP has energy 0. • HP has energy 0. • PH has energy 0. • The protein folds so as to minimize the energy.

  44. A folding of HHPPPPPPPHH with energy -2

  45. A folding of HHPPPPPPPHH with energy -4

  46. A folding of HHPPPPPPPHH with ? energy

  47. The real problem • There are 20 amino acids. • Pairs have different energies. • Typically a protein has about 100 amino acids. • The protein is in 3 dimensions. • It does not need to be on a grid. • It must be worked on a computer.

  48. The Direct Approach • Write down a formula for the energy E, taking into account the (variable) locations of all amino acids, all charges and electrostatic attractions and repulsions, and all constraints. • Minimize E.

More Related