miniature 3d profilometer for accelerating structure internal shape characterization n.
Download
Skip this Video
Download Presentation
Miniature 3D Profilometer for Accelerating structure Internal Shape Characterization

Loading in 2 Seconds...

play fullscreen
1 / 15

Miniature 3D Profilometer for Accelerating structure Internal Shape Characterization - PowerPoint PPT Presentation


  • 212 Views
  • Uploaded on

Risto Montonen 1,2 , Ivan Kassamakov 1,2 , Kenneth Österberg 1,2 , and Edward H ӕ ggström 2 1 Helsinki Institute of Physics, University of Helsinki 2 Department of Physics, University of Helsinki. Miniature 3D Profilometer for Accelerating structure Internal Shape Characterization. 5 mm.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Miniature 3D Profilometer for Accelerating structure Internal Shape Characterization' - xia


Download Now An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
miniature 3d profilometer for accelerating structure internal shape characterization

Risto Montonen1,2, Ivan Kassamakov1,2,Kenneth Österberg1,2, and Edward Hӕggström2

1 Helsinki Institute of Physics, University of Helsinki2 Department of Physics, University of Helsinki

Miniature 3D Profilometer for Accelerating structureInternal Shape Characterization

5 mm

CLIC Workshop 2014

introduction
Introduction
  • Accelerating Structures (AS) comprising OFE Cu disks undergo permanent thermo-mechanical deformations during assembly [1,2,3] and RF operation [4,5].
  • These deformations result in micron-level shape errors in AS.
  • > 10 mm axial depth rangewith sub-micron axialsensitivity is required.
  • Fourier Domain ShortCoherence Interferometry(FDSCI) -technique [7]

Shape error

Tolerance

1 µm [1,6]

5 µm [4]

140 µrad [1,6]

design a setup
Design A: Setup
  • LED light source (L-793SRC-E, Kingbright) emits light with = 22 nm centered at = 654 nm.
  • Visible range fiber optic spectrometer (HR2000, Ocean Optics, Inc., spectral resolution = 0.44 nm) captures spectral interferogram constructed from front and rear reflections of the cover glass sample.
    • Modulation in the spectral interferogram reveals the sample thickness
  • Expect 160 µm axial depth range [7,8]
  • Cover glass samples with 3 different thicknesses (microscope #00, #0, and #1, () = 1.5205)

Axial depthrange

design a spectral interferogram processing 9
Design A: Spectral interferogram processing [9]

Interferogram processing

Zeropadding

Gaussian convolution kernel – equispaced sampling grid in F

F-1

Gτ(F)

Change of variable

I(λ)

I( f )

Interfero-gram

Zeropadding

g(t)

Iτ(F)

aτ(t)

F-1

a(t)

Change ofvariable

A-scan

a(r)

design a spectral interferogram processing 91
Design A: Spectral interferogram processing [9]

Interferogram processing

Zeropadding

Gaussian convolution kernel – equispaced sampling grid in F

F-1

Gτ(F)

Change of variable

I(λ)

I( f )

Interfero-gram

Zeropadding

g(t)

Iτ(F)

aτ(t)

Deconvolution

F-1

a(t)

Linearly sampled Iτ(F)obtained by convolving I( f ) with Gτ(F)– Fourier transforming is now allowed

Change ofvariable

A-scan

a(r)

design a spectral interferogram processing 92
Design A: Spectral interferogram processing [9]

Interferogram processing

Zeropadding

Gaussian convolution kernel – equispaced sampling grid in F

F-1

Gτ(F)

Change of variable

I(λ)

I( f )

Interfero-gram

Zeropadding

g(t)

Iτ(F)

aτ(t)

F-1

a(t)

Change ofvariable

A-scan

a(r)

design a a scan analysis
Design A: A-scan analysis

Axial sensitivity σh

  • Glass sample thickness hSample
  • Axial sensitivity σh
  • Signal to noise ratio SNR
  • -3 dB spreadingδr of the point spread function (PSF)
design a setup verification
Design A: Setupverification

Due to manufacturers delivery problems #00 data point is not measured yet

  • Erichsenmodell 497
  • 1 µm resolution
design a setup performance1
Design A: Setup performance

Expected appearance of #00 data points

next step design b
Next step: Design B
  • Goal to reach the axial depth range across 10 mm
  • NIR LED (LED1550-35K42, Roithner Lasertechnik) + interferense filter (IF) (NIR01-1550/3-25, Semrock) = 8.8 nm centered at = 1550 nm
  • Tunable fiber Fabry-Perot (FFP) filter (FFP-TF2, Micron Optics) combined with photodetector (PD) (PT511-2, RoithnerLasertechnik) captures the spectral interferogram [10].
    • 23.2 nm free spectral range (FSR) at = 1550 nm, = 0.025 nm
  • Expect 16.6 mm axial depth range [7,8].
  • 1 – 10 mm quartz glass samples (() = 1.4440) [11]
conclusions
Conclusions
  • Firstsetup towards Miniature 3D Profilometer -device works fine.
  • Proof of concept for sub-micron sensitivity metrology has been achieved.
  • Work to reach the requiredaxial depth range of 10 mm is currently ongoing.
  • Integration of the fiber optic probe and AS scanning systemare the followingsteps.
references
References

[1] A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual Design Report, edited by M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney, H. Schmickler, D. Schulte, and N. Toge.

[2] J.W. Wang, J.R. Lewandowski, J.W. Van Pelt, C. Yoneda, G. Riddone, D. Gudkov, T. Higo, T. Takatomi, Proceedings of IPAC’10, Kyoto, Japan, THPEA 064.

[3] D.M. Owen, T.G. Langdon, Materials Science and Engineering A 216 (1996) 20-29.

[4] H. Braun et al., CERN-OPEN-2008-021; CLIC-Note-764.

[5] M. Aicheler, S. Sgobba, G. Arnau-Izquierdo, M. Taborelli, S. Calatroni, H. Neupert, W. Wuensch, International Journal of Fatigue 33 (2011) 396-402.

[6] R. Zennaro, EUROTeV-Report-2008-081.

[7]T-H. Tsai, C. Zhou, D.C. Adler, and J.G. Fujimoto, Optics Express 17 (2009) 21257-21270.

[8] R.A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A.F. Fercher, Optics Express 12 (2004) 2156-2165.

[9] K.K.H. Chan and S. Tang, Biomedical Optics Express 1 (2010) 1309-1319.

[10] J. Bailey, Atmospheric Measurement Techniques Discussions 6 (2013) 1067-1092.

[11] I.H. Malitson, Journal of the Optical Society of America 55 (1965) 1205-1209.

thank you

Thank You

CLIC Workshop 2014

ad