410 likes | 531 Views
The HERMES experiment investigates the fundamental question of proton spin, focusing on contributions from quarks, gluons, and orbital momentum. It aims to measure the polarization of sea quarks and gluons and explore the role of orbital angular momentum. Notable achievements include precise data on spin structure functions and advancements in generalized parton distributions. The discussion highlights the experimental strategy, results from polarized deep inelastic scattering, and emerging insights into the role of quark polarization, shedding light on the complex structure of nucleons.
E N D
The HERMES experiment Gerard van der Steenhoven, 19 September 2004
Search the carriers of proton spin • Three possible sources: • quarks: • valence quarks • sea quarks • gluons • orbital momentum • Mathematically: ½ = ½ Sq + DG + Lq EMC (85): q ~ 10% ~ 10% ? ?
The experimental strategy • Polarization of the sea quarks • Polarization of the gluons • Orbital angular momentum • Transversity: “switch off the gluons”
Outline of the lecture • The origin of proton spin? • Polarization of quarks • Gluon contributions • New developments • Generalized parton distributions → DVCS → Lq,g • Transverse spin → switch off the gluons • Other surprises • The HERMES pentaquark signal • Parton energy loss in nuclei • Outlook
How to probe the quark polarization? Polarized deep inelastic electron scattering Measure yield asymmetry: Parallel electron & quark spins Anti-parallel electron & quark spins In the Quark-Parton Model: Spin-dependent Structure Function
Why HERMES? • Original purpose (~1990): • Measure inclusive spin structure functions g1(x) for proton & neutron • Measure polarization of u-, d- and sea-quarks separately: qu,d,sea(x) • What came out sofar (~2004)? • Precise data on g1n,p(x), qu,d,sea(x) • First measurements of G(x), DVCS, transversity, parton energy loss,… gluon Quark-antiquark pair → design a reliable multi-purpose detector system !
~1.5m The HERMES experiment EM Calorimeter TRD RICH Magnet Target area e+BEAM Beam Loss Monitor Lambda Wheels
The HERMES spectrometer 27.6 GeV e+/e- 0.02 < x < 0.6, 1.0 < Q2 < 15 GeV2 p/p ~ 1-2%, < 0.6 mrad
Data taking since 1996 1996-2000 2002 - 2004
Spin-dependent structure functions • The function g1(x): • Evaluate the integrals: • 1999 result: From hyperon decays Total spin carried by quarks
Q2 dependence of F2(x) and g1(x) 2 2 + + →Gluons contribute to the nucleon spin !
QCD analysis of world data (’03) • Next-to-Leading-Orderanalysis of -data Excellent data forx > 0.01
Polarized Parton Densities • First moments: • input scale • pol. singlet density: • pol. gluon density: There must be other sources of angular momentum in the proton
Flavour decomposition of spin • Semi-inclusive deep inelastic scattering • Hadron tags flavour of struck quark • Derive purity of tag from unpolarized data Key issue: role of sea quarks in nucleon spin
Aerogel p K P C4F10 p K Particle identification • Dual radiator RICH: Detection efficiencies
Flavour decomposition: results Polarized Parton Distribution Functions ! Hadron asymmetries (measured) Known quantities (from other data) • The method: • Conclusion: qsea 0
Flavour symmetry breaking Unpolarized data:Polarized data: Strong breaking of flavour symmetry No significant breaking of flavour symmetry.
Gluon polarization • Photoproduction of high pT–hadron pairs → • Contributing diagrams: • Corresponding asymmetries:
Data and plans for G/G • Asymmetry for high-pThadron pairs production: • New high-precision data → ±0.18±0.03
Generalized Parton Distributions t p0, r0L, g ... • Consider exclusive processes: • Deeply virtual Compton scatt. • Exclusive vector meson prod. • Collins et al. proved factorization theorem (1997): x+x x-x N N’ Distribution amplitude (meson) final state Hard scattering coefficient (QCD) Generalized Parton Distribution (GPD) (NASTY: x = xBj for quarks and x = -xBj for antiquarks → x [-1,1])
GPDs give access toOrbital Angular Momentum of Quarks The remarkable properties of GPDs • Integration over x gives Proton Form Factors: Dirac Axial vector Pauli Pseudoscalar • The forward limit: • Second moment (X. Ji, PRL 1997):
Applying the GPD framework • GPDs enter description of different processes: • Take Fourier transform of leading GPD: AsJq = ½q + Lqinformation onJqgives data onLq. Spatial distribution of quarks in the perpendicular direction
A 3D-view of partons in the proton Form Factor Parton Density Gen. Parton Distribution A.V. Belitsky, D. Muller, NP A711 (2002) 118c
Experimental access to GPDs • Exclusive meson electroproduction: • Vector mesons (0): • Pseudoscalar mesons (): • Deeply virtual Compton scattering (DVCS): DVCS Bethe-Heitler
Key differences Experimental access to DVCS • DVCS observables: • Cross section: • Beam charge asymmetry: • Beam spin asymmetry: • Longitudinal target spin asymmetry:
First DVCS results Beam spin asymmetry Beam charge asymmetry
What is transversity? transverse quark spin, dS • Three leading order quark distributions: momentum carried by quarks longitudinal quark spin,DS • Gluons don’t contribute toh1(x), while dominant in g1(x): • Study nucleon spin while switching off the gluons • New QCD tests: Q2evolution h1(x) & dS > DS(lattice)
Measuring transversity - + quark flip target flip - + • The relevant diagram: • helicity flip of quark & target • chirally odd process • Consequences: • no gluon contributions…. … & measure single-spin asymmetries:
Single – Spin Asymmetries • Sivers effect: AUT driven by orbital motion struck quark: measure L • Collins effect: AUT driven by fragmentation process: measure transversity
First data on transversity ‘Collins’: ‘Sivers’: First evidence for non-zero Collins (h1) and Sivers effects (Lq) HERMES, hep-ex/0408013
Parton Energy Loss • Energy loss mechanisms: • hadron-nucleon rescattering • quark-gluon propagation (QCD: LPM effect) • Relevance: • Verification novel QCD effect • Study of Quark-Gluon Plasma in relativ. heavy-ion collisions.
DIS on heavy nuclei • Hadron attenuation in14N, 84Kr: Data: EPJC 21 (2001) 599 Search for quark-gluon plasma Dashed: X. Wang et al. (2002) [QCD + LPM effect + tune g(x)] Solid: Accardi et al. (2003) [Nincl. Q2 rescaling effects]
z x y Energy loss in hot matter • 0 production in Au + Au collisions at Phenix: • Adjust energy loss to fit data (cf. cold matter)
New data on hadron attenuation • Cronin effect: • enhancement at highpT2 (rescatt.) • Attenuation for0: Search for quark-gluon plasma
Two-hadron attenuation • Evaluate: • Partonic energy loss: R2h→1 • Hadronic energy loss: R2h~ (R1h)2 0.5(Kr) - 0.8(N) Both partonic and hadronic energy loss processes are relevant
The HERMES pentaquark signal • Quasi-real photoproduction: e+D Q+ X • Decay mode: Q+ p K0s p p+p- 27.6 GeV e-beam Invariant mass from identified decay particles deuteron gas target
+ Invariant mass peak Gauss + 3rd order polynom. • Background: 3rd order polynomial • M=1528 2.6 MeV • = 8 2 MeV(dominated by exp. resolution) • Significance: • naïve: • realistic:
Background below the + Gaussian + resonances + background fit • Background: MC sim-ulation + resonances • MQ = 1527 2.3 MeV • = 9.2 2 MeV • Significance: • naïve: 6.1 • Realistic: 4.3 Mixed event background Pythia6 background additional *+ resonances (not in Pythia6)
nK+ Comparison of pentaquark data • Mean: 1532.52.4 MeV Average of all data: M =1532.5 2.4 MeV Includes latest from - JINR (hep-ex/0403044) - LPI (hep-ex/0404003)
Latest HERMES results on + • Require additionalpin + mass spectrum • Impose veto on K*and(1116) Signal/background improves from 1:3 2 :1
Summary • HERMES results: • Quark sea → unpolarized • Gluons → polarized // proton • First data on transversity: Quarks carry orbital momentum? • First exploration of GPDs • Partonic energy loss seen • Co-discovery pentaquarks • The future: • End of HERA operations: summer of 2007