1 / 125

Quantum One

Quantum One. Completeness Relations, Matrix Elements, and Hermitian Conjugation. In the last lecture , we introduced a class of operators called ket-bra operators, whose action on arbitrary states is “self-evident”.

Download Presentation

Quantum One

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quantum One

  2. Completeness Relations, Matrix Elements, and Hermitian Conjugation

  3. In the last lecture, we introduced a class of operators called ket-braoperators, whose action on arbitrary states is “self-evident”. We used operators of this type to define another important class of operators called projection operators, which obey an idempotency condition, and that generally project an arbitrary state onto some subspace of . By considering complete sums of orthogonal projectors, we deduced the completeness relations for discrete and continuous ONBs, which provide a decomposition of the identity operator in terms of a “complete set of states”. As it turns out, these completeness relations provide useful tools for generating representation dependent equations, from their representation independent counterparts.

  4. In the last lecture, we introduced a class of operators called ket-braoperators, whose action on arbitrary states is “self-evident”. We used operators of this type to define another important class of operators called projection operators, which obey an idempotency condition, and that generally project an arbitrary state onto some subspace of . By considering complete sums of orthogonal projectors, we deduced the completeness relations for discrete and continuous ONBs, which provide a decomposition of the identity operator in terms of a “complete set of states”. As it turns out, these completeness relations provide useful tools for generating representation dependent equations, from their representation independent counterparts.

  5. In the last lecture, we introduced a class of operators called ket-braoperators, whose action on arbitrary states is “self-evident”. We used operators of this type to define another important class of operators called projection operators, which obey an idempotency condition, and that generally project an arbitrary state onto some subspace of . By considering complete sums of orthogonal projectors, we deduced the completeness relations for discrete and continuous ONBs, which provide a decomposition of the identity operator in terms of a “complete set of states”. As it turns out, these completeness relations provide useful tools for generating representation dependent equations, from their representation independent counterparts.

  6. In the last lecture, we introduced a class of operators called ket-braoperators, whose action on arbitrary states is “self-evident”. We used operators of this type to define another important class of operators called projection operators, which obey an idempotency condition, and that generally project an arbitrary state onto some subspace of . By considering complete sums of orthogonal projectors, we deduced the completeness relations for discrete and continuous ONBs, which provide a decomposition of the identity operator in terms of a “complete set of states”. As it turns out, these completeness relations provide useful tools for generating representation dependent equations, from their representation independent counterparts.

  7. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  8. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  9. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  10. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  11. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  12. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  13. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  14. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  15. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  16. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  17. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  18. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  19. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  20. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  21. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  22. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  23. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  24. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  25. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  26. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  27. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  28. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  29. Consider, e.g., that if {|i〉} form an ONB for S then 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  30. But we know two representations for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  31. But we know two representations for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  32. But we know two representations for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  33. But we know two representations for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  34. But we know two representations for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  35. But we know two representations for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  36. But we know two representations for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  37. But we know two representations for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  38. But we know two representations for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  39. Similarly, for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  40. Similarly, for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  41. Similarly, for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  42. Similarly, for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  43. Similarly, for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  44. Similarly, for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  45. Similarly, for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  46. Similarly, for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  47. Similarly, for a single particle: The states {|i〉} form an ONB for Sso 〈i|j〉=δ_{ij} ∑_{i}|i〉〈i|=1 and we can write: |χ〉=1|χ〉=∑_{i}|i〉〈i|χ〉=∑_{i}χ_{i}|i〉 〈ψ|χ〉=〈ψ|(1|χ〉)=∑_{i}〈ψ|i〉〈i|χ〉=∑_{i}ψ_{i}^{∗}χ_{i}

  48. Matrix Elements, and the Action of Operators to the Left

More Related