1 / 30

Células troncales humanas o células madre o estaminales ( stem cells )

Células troncales humanas o células madre o estaminales ( stem cells )  Células capaces de originar otras células (hijas) especializadas en algún tipo tisular  Se encuentran en: - estadios embrionarios células embrionarias: pluripotentes

waite
Download Presentation

Células troncales humanas o células madre o estaminales ( stem cells )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Células troncales humanas o células madre o estaminales (stem cells)  Células capaces de originar otras células (hijas) especializadas en algún tipo tisular  Se encuentran en: - estadios embrionarios células embrionarias: pluripotentes - tejidos fetales (cordón umbilical, placenta) células somáticas: multipotentes - tejidos adultos células somáticas: multipotentes  Poseen dos propiedades fundamentales - Se dividen dando lugar incluso a otras células troncales: auto-perpetuación - Son capaces en determinadas circunstancias de convertirse (diferenciarse) en otros tipos de células más especializadas = las que forman los órganos de nuestro cuerpo. Esta segunda característica es la que las hace interesantes para la regeneración (reconstrucción / reparación) de tejidos dañados por enfermedad o accidente (piel, sangre, huesos, etc.)  No todas las células troncales tienen igual capacidad de diferenciación, es decir no todas están en lo que llamamos estadio de pluripotencia. Las pluripotentes, es decir que en principio pueden dar origen a cualquier tejido, son las embrionarias. Las presentes en tejidos adultos parecen tener una capacidad de especialización más limitada (no obstante, la capacidad de originar distintos tejidos por parte de células que no son pluripotentes está en plena investigación)

  2.  En los organismos pluricelulares existen: a)células germinales: son las encargadas de producir células gaméticas mediante las que se transmite la información genética a la descendencia del sujeto portador de esas células b) células somáticas: son las encargadas de producir el “soma” o cuerpo del individuo portador de las mismas  Por consiguiente, distinguimos dos tipos de células fundamentales: a) células troncales germinales o células madre embrionarias Derivan de: i) MCI del Blastocisto ii) primordio germinal: estructura embrionaria –presente en las crestas gonadales– que dará lugar a las gónadas (testículos y ovarios). En embriones humanos este proceso ocurre entre la quinta y novena semana (35-63 días) post-fertilización iii) teratocarcinomas: procesos neoplásicos que aparecen en la gónadas de adultos, aunque mayoritariamente en individuos de sexo masculino, que constituyen un crecimiento incontrolado y desorganizado de células de la línea germinal que se empiezan a dividir y diferenciar sin control en todos los linajes celulares del organismo dando origen a un tumor b)células troncales somáticas o células madre adultas Derivan de: - cordón umbilical, placenta, tejidos, órganos de adultos

  3. Célula totipotente: célula troncal que tiene la capacidad de diferenciarse en el embrión y membranas extraembrionarias (ej., la placenta), y en todos los órganos y tejidos postembrionarios. Las células totipotentes contribuyen a todos los tipos celulares de un organismo adulto. La totipotencia es la capacidad funcional de una célula de dar lugar a un individuo completo tras un proceso de desarrollo normal. Aunque la totipotencia de células de embriones preimplantatorios de mamíferos previas al estadio de blastocisto está experimentalmente demostrada, recientes investigaciones han demostrado que las células de embriones de 2, 4 y 8 células tienen una cierta diferenciación o polaridad que determina el tipo de células o tejidos que van a dar posteriormente. Se discute hasta qué momento conservan las células conservan su totipotencia. En el embrión humano, parece ser que solamente son totipotentes los blastómeros hasta el estadío de mórula de 16 células. Célula pluripotente: célula troncal presente en los estadíos tempranos de desarrollo embrionario que puede generar todos los tipos de células en el feto y en el adulto y es capaz de autorenovación. Las células pluripotentes, sin embargo, no son capaces de desarrollarse en un organismo completo. La pluripotencia es la capacidad funcional de una célula de dar lugar a varios linajes celulares o tejidos diferentes. Las células troncales embrionarias presentes en la masa celular interna del blastocisto humano son pluripotentes, pero no totipotentes; es decir, pueden originar distintos tejidos u órganos pero no dar lugar al desarrollo completo de un embrión porque no pueden producir las membranas y tejidos extraembriónicos necesarios para el proceso de gestación.

  4. No obstante, podría ocurrir que una célula pluripotente de la masa celular interna se convirtiera en totipotente. La pluripotencia aparece en el estadío de blastocisto (6-7 días). Célula multipotente: célula troncal presente en los tejidos u órganos adultos (somáticos) que tiene una capacidad limitada de reactivar su programa genético como respuesta a determinados estímulos que le permiten dar lugar a algunos, pero no todos, los linajes celulares diferenciados. En principio, su repertorio de tipos celulares se restringe a los tipos que habitualmente conforman un tejido u órgano determinado. El ejemplo más claro son la hematopoiéticas: están en la médula ósea y dan lugar a todos los tipos celulares presentes en la sangre. La multipotencia es la capacidad funcional de una célula de dar lugar a alguno, pero no todos, los linajes celulares. Algunas células troncales presentes en tejidos u órganos adultos son multipotentes. A veces se utiliza el término plasticidad como equivalente a multipotencia. Aunque los prefijos latinos "pluri" y "multi" son equivalentes, sin embargo conceptualmente en el presente contexto científico el primero se considera mayor que el segundo; es decir, la pluripotencia supone mayor grado de plasticidad que la multipotencia.

  5. : tejido óseo, piel, etc.

  6. Fases iniciales en el desarrollo del embrión de un mamífero La vida prenatal se divide en tres períodos: 1. Fertilización o pre-implantación hasta la 2a semana 2. Embrionario desde la 3a hasta la 8a semana 3. Fetal desde la 9ª semana hasta el nacimiento. En los animales vertebrados la embriogénesis (embrión + génesis: complejo proceso generativo que conduce a la formación de un organismo pluricelular a partir del zigoto) se divide en cuatro grandes fases secuenciales: 1) segmentación, 2) gastrulación, 3) neurulación y 4) organogénesis 1) Segmentación: el zigoto se divide por mitosis sucesivas hasta alcanzar el estado de blastocisto. Se denomina segmentación o clivaje al proceso embriológico temprano que consiste en una serie de divisiones celulares (mitosis) del óvulo fecundado (zigoto) que se producen antes de la gastrulación. Las células resultantes de la división del zigoto se denominan blastómeros y forman una masa compacta llamada mórula. A partir de ésta se forma la blástula y posteriormente la gástrula. Esta fase (segmentación) ocurre en la 1ª semana

  7. 2) Gastrulación: Es una etapa del desarrollo embrionario que ocurre después de la formación de la blástula, esto es que sigue a la etapa de segmentación o clivaje y tiene por objeto la formación de las capas fundamentales del embrión (capas germinales). Esta formación acontece entre los días 15 y 18 (inicio de la 3a semana) Ectodermo: la capa más externa de células que rodea al embrión Mesodermo: células que forman la parte superior de la capa que creció hacia el interior en la blástula Endodermo: capa de células más interna 3) Neurulación: “neurula” es el nombre que recibe un embrión después de concluir la etapa de gastrulación y se caracteriza principalmente por la formación de los esbozos embrionarios (tubo neural y las crestas neurales) que darán lugar al sistema nervioso: médula espinal y encéfalo. Esta fase ocurre en la 4ª semana

  8. 4) Organogénesis (O): 4a a 8a semana del desarrollo •  Proceso que comprende la formación de los diferentes órganos del embrión por la diferenciación y maduración de los diversos tejidos. Las 3 capas embrionarias ectodermo, mesodermo y endodermo se transforman en los diferentes órganos. Antes de la (O) ocurre la formación de órganos rudimentarios, es decir sin forma ni tamaño definido. La (O) permite la ordenación y formación de las diferentes estructuras corporales, más específicamente la formación de los órganos • Primero se produce (3ª semana) el paso de embrión bilaminar a trilaminar (2 hojas del disco embrionario a tres hojas: gastrulación) dando lugar a el ectodermo, el mesodermo y el endodermo embrionario. Éstos a su vez, en la siguientes semanas, se diferenciarán y especializarán dando lugar a los diferentes órganos del cuerpo, cuyos esbozos quedarán conformados antes del tercer mes de gestación  En la (O) existen varios factores que surgen del tejido embrionario. Del ectodermo, se deriva la piel, del endodermo el endotelio y el mesotelio; del mesodermo se deriva los organos del aparato digestivo y del respiratorio. Es el momento de la organogénesis (formación de los distintos órganos internos), es el período más delicado y en el que las influencias externas van a producir mayores consecuencias adversas

  9. Períodos de la vida prenatal pre-implantaciónembrionariofetal (semanas 1-2) (semanas 3-8) (semanas 9…) 4 Fases 1) Segmentación (semana 1) 2) Gastrulación (semana 3) 3) Neurulación (semana 3-4) 4) Organogénesis (semanas 4 a 8)

  10. Fecundación (fertilización del oocito = óvulo) por el espermatozoide Espermatozoides sobre la pelúcida del ovocito Espermatozoides rumbo al ovocito Degradación y penetración de la zona pelúcida

  11. Fecundación Los dos pronúcleos antes de su singamia (aún con la cubierta pelúcida)  El espermatozoide (E) activa la finalización de la división meiótica en el óvulo y genera su núcleo gamético (pronúcleo) que junto con el del (E) e se fusiona dando origen al primer núcleo del embrión de una célula (cigoto) con los pares de cromosomas propios de la especie (23)  A las 36 horas el cigoto se dividirá en 2 células y continuará su división en forma exponencial: 4, 8, 16, 32, 64, 128, 512, 1024, etc. Cuerpos polares: la entrada del (E) reactiva la 2° división meiótica y se expulsa el segundo corpúsculo polar. Entonces el ovocito está preparado con la mitad de los cromosomas para unirse al pronúcleo del (E) que lleva la otra mitad Pronúcleos masculino y femenino

  12. Fecundación La fecundación es la secuencia de fenómenos coordinados que se inicia cuando entran en contacto ambos gametos (óvulo y espermatozoide) y dura 24 horas. Si la primera división celular (singamia) se produce a las 36 horas, entonces tenemos la siguiente secuencia: Relación sexual fecundante (hora 0)  Penetración en la zona pelúcida (hora 12)  Primera división celular (hora 36). Entre la relación sexual fecundante (RSF) y la penetración en la zona pelúcida median 12 horas. Entre la penetración en la zona pelúcida y la primera división celular (singamia) median 24 horas Una vez fecundado el óvulo (23 cromosomas) por el espermatozoide (23 cromosomas) y producida la singamia o primera división celular (unas 36 horas después de la relación sexual fecundante), las dos células iniciales ya cuentan con 46 cromosomas Según Omar Fança Tarragó (UCU), esta primera división celular es la que propiamente debería llamarse concepción del cigoto puesto que recién ahí está completamente organizado, como un todo, el nuevo cuerpo de 46 cromosomas articulados con sus respectivos genes

  13. Fase Temprana de la embriogénesis Embrión humano de 4 células llamadas blastómeros (células más pequeñas con igual volumen complexivo del embrión)

  14. Fase temprana del desarrollo embrionario Embrión de 8 células

  15. Fase Temprana de la embriogénesis Embrión de 12 células

  16. Fase temprana de la embriogénesis Embrión de 12 a 16 células (entre el 3° y 4° día)

  17. Fase Temprana de la embriogénesis Mórula = agregación celular que parece una mora en el microscopio (16 células)

  18. Fase Temprana de la embriogénesis Blastocisto en expansión La mórula se convierte en blastocisto (días 6º-7º) ≈ 100 células

  19. Fase Temprana de la embriogénesis M.C.I. Células embrionales pluripotentes Trofoblastos

  20. Blastocisto El embrión en estado de blastocisto alcanza aproximadamente un centenar de células y en él ocurre la primera gran diferenciación o diversificación celular. Aparecen dos clases de células: - en el exterior: los trofoblastos (forman una cubierta protectora) - en el interior: grupo de células llamado la masa celular interna (MCI) situado asimétricamente y delimitando una cavidad o blastocelle. Este grupo de células está constituido fundamentalmente por células embrionales pluripotentes (stem cells) Desde el embrión de dos células o blastómeros y durante el estadío de mórula (hasta 16 células según Ramón Lacadena) cada una de las células constituyentes del embrión preimplantatorio tiene características totipotentes pudiendo cada una, en principio, dar lugar a la gestación de un embrión completo, incluidas las membranas extraembrionarias y la placenta. Cuando el embrión llega a la fase de blastocisto pierden la totipotencia y pasan a ser pluripotentes

  21. Día 0 Fecundación Día 3 Trompas Día 7 Previo a Implantación Embrión m.c.i. Trofoblasto Placenta Células madre embrionales Zigoto (óvulo fecundado) Mórula (varios blastómeros) Blastocisto (masa celular interna) Masa Celular A partir de la tercera mitosis migra a la pluripotencia Masa Celular Pluripotente Célula Totipotente Células madre embrionales

  22. m.c.i. Blastómero Cultivo in vitro Transferencia del núcleo de una célula adulta a un óvulo enucleado Blastocisto Nervioso Células Madre Piel Músculo Diferenciación del cultivo in vitro Hueso Tejidos Clonación Terapéutica = reconstrucción de embriones mediante transferencia nuclear (viabilidad no demostrada) Ingeniería de Tejidos y Terapias Celulares

  23. Fecundación in vitro Clonación por transferencia nuclear a célula somática adulta Células madre embrionales que provienen de fetos abortados Células Indiferenciadas en Cultivo Tejidos Piel Hueso Nervioso Músculo Fuentes de células madre embrionales

  24. Endotelio de Córnea Endotelio Vascular Mioblastos Condroblastos Sistema Nervioso Central (SNC) Osteoblastos Estroma de la Médula Ósea(MSC) Cordón Umbilical Hematopoyéticas(HSC) Células Madre adultas Fuentes Proveedoras

  25. Células Madre adultas Fenómeno de Transdiferenciación Concepto:Plasticidad de las células madre de adultos que permite que las células precursoras de un linaje, en condiciones determinadas, den origen a células de otros linajes • Rompería las restricciones preexistentes en el desarrollo de las Terapias Celulares y de la Ingeniería de Tejidos • Ampliaría las potenciales fuentes y usos de las Células Madre Adultas

  26. Células cerebrales que dan línea sanguínea • MSC (médula ósea) que dan microglía (células con capacidad fagocitaria que se originan en precursores de la médula ósea y alcanzan el sistema nervioso a través de la sangre) y astroglía [células de linaje neuroectodérmico, una de las tres regiones diferenciadas del embrión: el ectodermo (las otras dos son el endodermo y el mesodermo) que asumen un elevado número de funciones clave para la realización de la actividad nerviosa] • Células madre neurales que dan músculo esquelético • HSC (hematopoyéticas) dan células hepáticas • MSC dan linajes no mesenquimatosos como astrocitos • Células satélite de músculo esquelético pueden repoblar la sangre • HSC dan músculo Células Madre adultas Fenómeno de Transdiferenciación Se ha observado en diferentes experimentos:

  27. Fenómeno de la transdiferenciación ¿Son las células multipotentes adultas también pluripotentes? Distinguir los hechos de su explicación científica 2) Margaret Godell demostró que las células madre adulta musculares con aparente capacidad hematopoiética eran ya en el origen hematopoiéticas y no musculares (a pesar de hallarse en el músculo esquelético) 3) Sólo en un caso se demostró la plasticidad de células madre presentes en la médula ósea (células mesenquimales). Se denominan células MAPC: Mesenchymal Adult Pluripotent Cells

  28. Células troncales embrionarias Ventajas: pluripotencia, inmortalidad, facilidad de aislamiento y de cultivo Desventajas: direccionabilidad, tumorogenicidad, posible desdiferenciación, identidad inmunológica (histocompatibilidad), problemas éticos con el embrión (¿partenogénesis?: forma de reproducción que desarrolla células sexuales femeninas sin fecundar: se segmenta el óvulo mediante factores ambientales, químicos, descargas eléctricas, etc. Puede interpretarse como reproducción “asexual” o como “sexual monogamética” = interviene sólo una célula sexual o gameto) Células troncales adultas Ventajas: no requieren embriones, transdiferenciación (?), compatibilidad inmunológica Desventajas: difíciles de aislar y cultivar, adopción de nuevos fenotipos mediante fusiones celulares

More Related