2 2 materials materials n.
Skip this Video
Loading SlideShow in 5 Seconds..
2.2 Materials Materials PowerPoint Presentation
Download Presentation
2.2 Materials Materials

Loading in 2 Seconds...

play fullscreen
1 / 27

2.2 Materials Materials - PowerPoint PPT Presentation

  • Uploaded on

2.2 Materials Materials. Breithaupt pages 162 to 171. AQA AS Specification. Elasticity and springs. Elastic limit and Yield point. Elasticity and springs. Elastic limit and Yield point. Hooke’s Law.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about '2.2 Materials Materials' - vahe

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
2 2 materials materials

2.2 MaterialsMaterials

Breithaupt pages 162 to 171


Elasticity and springs

Elastic limit and Yield point


Elasticity and springs

Elastic limit and Yield point


Experiment to investigate Hooke’s Law

Obtain data to plot graphs on the same axes for

the following spring combinations:

hooke s law
Hooke’s law

The force (F ) needed to stretch a spring is directly proportional to the extension (ΔL ) of a spring from its natural length.

F α ΔL

Adding a constant of proportionality:

F = k ΔL or F = -K ΔL

kis called the spring constant

The spring constant is the force required to produce an extension of one metre.

unit = Nm-1

elastic limit
Elastic limit

Up to a certain extension if the force is removed the spring will return to its original length. The spring is said to be behaving elastically.

If this critical extension is exceeded, known as the elastic limit, the spring will be permanently stretched.

Plastic behaviour then occurs and Hooke’s law is no longer obeyed by the spring.


(b)F = k ΔL

→ ΔL = F / k

= 18N / 200 Nm-1

ΔL = 0.09 m

= 9 cm

And so the spring’s length

= 24 cm

A spring of natural length 15cm is extended by 3cm by a force of 6N. Calculate (a) the spring constant and (b) the length of the spring if a force of 18N is applied.

(a)F = k ΔL

→ k = F / ΔL

= 6N / 0.03m

spring constant, k

= 200 Nm-1

tensile stress
Tensile stress (σ)

A stretching force is also called a tensile force.

Tensile stress = tensile force

cross-section area

σ = F / A

unit – Pa (pascal) or Nm-2

Note: 1 Pa = 1 Nm-2

breaking stress
Breaking stress

This is the stress required to cause a material to break.

tensile strain
Tensile strain (ε)

Tensile strain = extension

original length

ε = ΔL / L

unit – none (it’s a ratio like pi)


A wire of natural length 2.5 m and diameter 0.5 mm is extended by 5 cm by a force of 40 N. Calculate:

(a) the tensile strain ε = ΔL / L

(b) the tensile stress σ = F / A

(c) the force required to break the wire if its breaking stress is 1.5 x 109 Pa. σ = F / A

(a)ε = ΔL / L

= 0.05m / 2.5m

tensile strain, ε = 0.02


(c)σ = F / A

→ F = σ A

= 1.5 x 109 Pa x 1.96 x 10-7 m2

Breaking Force, F = 294 N

(b)σ = F / A

A = Area

= π r2

= π x (0.25 x 10-3 )2 m2

= 1.96 x 10-7 m2

σ = 40N / 1.96 x 10-7 m2

stress, σ = 2.04 x 108Pa


Key points

1. Springs in series are ‘slacker’


Key points

1. Springs in series are ‘slacker’


Key points

1. Springs in series are ‘slacker’


Key points

2. Springs in parallel are ‘stiffer’


Key points

2. Springs in parallel are ‘stiffer’


Key points

2. Springs in parallel are ‘stiffer’


Key points

2. Springs in parallel are ‘stiffer’

notes on hooke s law and springs from breithaupt pages 164 to 166
Notes on Hooke’s law and Springsfrom Breithaupt pages 164 to 166
  • Define Hooke’s law. Quote the equation for Hooke’s law.
  • What is meant by (a) the spring constant and (b) the elastic limit.
  • A spring of natural length 40 cm is extended to 50 cm by a force of 2N. Calculate (a) the spring constant in Nm-1 (b) the expected length of the spring if it were to be extended by a force of 5N.
  • Show that the overall spring constant, k for (a) springs in series is given by k = k1 + k2; (b) springs in parallel is given by 1 / k = 1 / k1 + 1 / k2 where k1 and k2 are the spring constants of the individual springs.
  • Try Summary Questions 1, 2 & 3 on page 166
internet links
Internet Links
  • Stretching Springs- PhET - A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.