540 likes | 773 Views
脉冲星到达时间 Pulsar Timing. 经 典 计 时. 地球的公转:精度 ~0.1 秒的小数 平太阳时,恒星时 地球自转:精度 ~10 - 8 秒 协调世界时. 古 老 方 法. 现 代 计 时. 自然界的微观周期运动,以原子 / 分子的周期振动制作人工连续计时. 脉冲星 —— 精确自转的天体. 脉冲星简介. 已知 1850 颗脉冲星,绝大多数在银河系 周期~ 1s 毫秒脉冲星性质很不相同 (~ 0.003 s) 多数毫秒脉冲星处于双星系统 毫秒脉冲星是再循环的年老脉冲星,自转 非常稳定.
E N D
脉冲星到达时间Pulsar Timing Pulsar Workshop, 2009, NAOC
经 典 计 时 • 地球的公转:精度~0.1秒的小数 平太阳时,恒星时 • 地球自转:精度~10-8秒 协调世界时 Pulsar Workshop, 2009, NAOC
古 老 方 法 Pulsar Workshop, 2009, NAOC
现 代 计 时 自然界的微观周期运动,以原子/分子的周期振动制作人工连续计时 Pulsar Workshop, 2009, NAOC
脉冲星——精确自转的天体 Pulsar Workshop, 2009, NAOC
脉冲星简介 • 已知1850颗脉冲星,绝大多数在银河系 • 周期~1s • 毫秒脉冲星性质很不相同(~ 0.003 s) • 多数毫秒脉冲星处于双星系统 • 毫秒脉冲星是再循环的年老脉冲星,自转 非常稳定 0.001s 0.01s 0.1s 1s 10s PSR J0437-4715 周期为: 5.757451831072007 0.000000000000008 ms Pulsar Workshop, 2009, NAOC
什么是脉冲星脉冲到达时间 • Pulsar rotate tens or even hundreds of times every second. • Measure the time-of-arrival (TOA) of pulses. • Differences between the observed TOAs and a model are called timing residuals. • The predicted rotation pulse phase given by the basic timing model: Vela Crab The Vela PSR B0329+54的脉冲 The Crab T (second) Pulsar Workshop, 2009, NAOC
地球运动造成的脉冲到达时间延迟: (假设圆运动) A: light travel time from Sun to Earth t: time λ: ecliptic longitude β: ecliptic latitude ω: angular velocity of Earth 位置测量精度的问题: β=90°:highest angular accuracy of position β=0°:poor angular accuracy of position 位置测量误差导致时间延迟: Pulsar Workshop, 2009, NAOC
视差最大延迟示意图: PSRJ0437-4715:2.7μs • 需考虑: • 地球自转21ms • 椭圆轨道 • 太阳系惯性质量中心与太阳并不重合:木星等行星的影响 • 地球在椭圆轨道上的引力势有周年变化,地面钟相对圆形轨道有周年变化 • Doppler效应二阶项,与地球的椭圆轨道相关,∝V2地球 • Roemer延迟 vs.视差测量 • 地球轨道上引力势的变化,时空弯曲->时间延迟 • 群延迟:消色散 Pulsar Workshop, 2009, NAOC
参考时刻 测站主钟与标准地面时间的差 太阳系内传播效应时间延迟,和相对论时间改正分别对应:“Roemer”、“Einstein”、“Shapiro”效应 光行差效应 双星系统中传播效应时间延迟,和相对论时间改正,分别对应:“Roemer”、“Einstein”、“Shapiro”效应 Pulsar Workshop, 2009, NAOC
Roemer改正 Pulsar oe: observer to earth center es: earth center to sun sb: sun to solar system barycenter ob: observer to solar system barycenter roe 时间改正 rob roe:观测站的高度 res:天文单位,由地月质心运动和地球本身的运动决定 res rsb rsb:太阳系各行星之和: JPL星表 Pulsar Workshop, 2009, NAOC
广义相对论项改正 1. Time dilation:地球运动及引力红移 S:随地球椭圆轨道公转的地面原子钟时间 t:距太阳无限远的原子钟协调时 两个时间系统的微分表达: r:日地距离 a:地球轨道半长轴 • r=常数a: • 变化r: 其中f:地球实时运动与近日点的角距,非均匀变化:真近点角 Pulsar Workshop, 2009, NAOC
广义相对论项改正 原子钟与标准钟之差: ms l: 平近点角。,-el为常数改正,并入所定义的标准钟,其他变化量表示为相对论改正: Pulsar Workshop, 2009, NAOC
Sin(i)=0.99975±0.00015 广义相对论项改正 2. Shapiro delay:时空弯曲,太阳系时间延迟为: θ:脉冲星-太阳-地球夹角 太阳附近:最大值120us 木星附近:200 ns。行星很小,可忽略 Shapiro Delay的残差 Pulsar Workshop, 2009, NAOC
引力作用下的时空扭曲 太阳的质量是1.989133千克,质量使它的四周产生时空扭曲,如果光经过太阳的附近,光发生1.75“角度的偏转。通过双星系统中的脉冲星也可观测到该现象。 Pulsar Workshop, 2009, NAOC
Four General Relativistic Effects—by Andrew Lyne • 1. Periastron Advance: dω/dt • Due to non-radial force arising from finite speed of gravity Advance of perihelion of Mercury = 43 arcsec/century = 0.00012 deg/year Advance of periastron of 0737-3039 = 16.88 deg/year Pulsar Workshop, 2009, NAOC
Four General Relativistic Effects—by Andrew Lyne • 2. Gravitational Redshift and Time Dilation: γ • Clocks run slow in a gravitational well e.g. Clocks on Earth run slow and fast by ± 0.0016 sec Pulsar Workshop, 2009, NAOC
Small delay Large delay Sin(i)=0.99975±0.00015 Four General Relativistic Effects—by Andrew Lyne • 3. Shapiro Delay: “Range” r and “Shape” s • Radiation travels more slowly through a gravitational well Pulsar Workshop, 2009, NAOC
Four General Relativistic Effects—by Andrew Lyne • 4. Orbital Decay: dPb/dt • Loss of energy through gravitational radiation • Orbital period and size shrink Pulsar Workshop, 2009, NAOC
射电脉冲星实测关键技术 & 数据库 脉冲星脉冲到达时间观测是基本观测 1、获得观测起始时刻 2、获得观测时间的视周期 3、数据采样:足够的时间、频率分辨率 4、观测积分折叠 5、消色散(射电观测)提高脉冲轮廓信噪比 6、脉冲轮廓相关,获得TOA 7、太阳系星历表TOA归算到惯性系 8、分析,改进的脉冲星自转模型,其他 Pulsar Workshop, 2009, NAOC
T是换算到太阳系质量中心的时间 自转模型 残差:观测与模型的差别 • 影响脉冲到达时间的因素: • 脉冲星自转变化 • 脉冲星位置变化和误差 • 色散延迟 • 散射 • 相对论效应 • 双星系统的轨道运动 • 地球运动 • 其他未知因素 Pulsar Workshop, 2009, NAOC
如何得到TOA 脉冲星PSR B1933+16 Pulsar Workshop, 2009, NAOC
Timing Signal Submitted to MNRAS 周期测量:三次以上的观测 周期导数:几个月 P,Pdot,position,DM Pulsar Workshop, 2009, NAOC
位置测量需要至少一年的数据,最高精度达到0.001arcs位置测量需要至少一年的数据,最高精度达到0.001arcs 自行测量则需要几年的数据,收到达时间噪声影响,若需精确测定PM一般用VLBI技术 位置位差与自行误差的“Timing signal”: Pulsar Workshop, 2009, NAOC
PSR J2150+5247的残差 噪声小的脉冲星,其自转参数、位置、自行等参数的测量也准确 Pulsar Workshop, 2009, NAOC
The Shklovsky effect – secular acceleration 对于脉冲星横向速度V较大的情形,Doppler 效应造成视周期的变化,甚至可以抵消slow-down,时间延迟可表示为: a:轨道半场轴,d:脉冲星距离 观测现象表现为周期导数的变化: 设d=1 kpc,V=100km s-1 yr 脉冲星的内禀周期导数与Shklovsky 效应不易区分,除非自行与距离精确已知 对于长周期脉冲星,该效应不明显,毫秒脉冲星则不同 secular acceleration for MSPs: PSR J0437-4715: Pulsar Workshop, 2009, NAOC
Gravitational acceleration 考虑银河系引力场、球状星团、伴星中,脉冲星在视线方向被加速,观测到得 脉冲星周期导数为: a: 视线方向加速度 球状星团中的脉冲星加速明显,甚至表现为脉冲星在加速自转: 球状星团M15中的MSPs PSR B2127+11A和PSR B2127+11D: 位于星团的远端,朝着中心运动,可用来估计星团中心的质量 Pulsar Workshop, 2009, NAOC
自由进动 脉冲星的摇摆(进动)导致其自转轴随时间的运动轨迹为圆形;就象陀螺的顶部的运动一样。所以我们就从不同的角度观测锥形辐射束,导致观测到的脉冲形状和脉冲到达时间的变化。 Pulsar Workshop, 2009, NAOC
自由进动 • 旋转的物体会表现出自由进动,自转轴与角动量矢量不重合 • 自转轴与磁轴夹角的周期变化 • 表现为自转速率的长期、准周期变化,可观测到周期导数的变化 • 还会表现为脉冲轮廓的变化 • 进动幅度:对应0.5—1deg的进动角 • 进动角速度: Pulsar Workshop, 2009, NAOC
Pulsar ages 角频率Ω,磁偶极矩M⊥时辐射能量为 磁偶极辐射主导,粒子流。辐射损失角动能 即: α:磁倾角 磁赤道表面磁场: 磁极表面磁场:2Bs 周期为P0的脉冲星周期演化: n: braking index 假设脉冲星减慢遵循指数变化: 积分上式,得脉冲星特征年龄 磁偶极n=3,星表特征年龄为: Pulsar Workshop, 2009, NAOC
Pulsar ages • 1. 验证脉冲星磁偶极模型 • 脉冲星与超新星遗迹,验证恒星演化 • Crab的验证:1054年超新星爆发 Crab脉冲星的周期三阶导数可测,并与偶极 辐射理论一致! The braking index 对 求导, • 仅对六颗年轻脉冲星,测得n: • 大部分脉冲星受周期噪声影响 • n测量值没有物理意义 PSR B0531+21 n=2.515±0.005 (Crab) PSR B1509-58 n=2.837±0.001 PSR B0540-69 n=1.81±0.07 PSR J1119-6127 n=3.0±0.1 PSR B0835-45 n=1.4±0.2 (Vela) PSR J1846-0258 n=2.65±0.1 (AXP) Pulsar Workshop, 2009, NAOC
Pulsar clock clock • T(1937) and T(1855) are the timescales based on the pulsars PSR B1937+21 and PSR B1855+09, respectively. • TT96 is a terrestrial atomic timescale. TA(A.1) • TA(PTB) are free running atomic timescales from the U.S. Naval Observatory and Germany. Matsakis, Taylor & Eubanks, 1997, A&A Pulsar Workshop, 2009, NAOC
13 Years of Timing of PSR B1259-63 N. Wang S. Johnston R. N. Manchester Pulsar Workshop, 2009, NAOC
Brief Introduction of PSR B1259-63: • Discovered in a large-scale high frequency survey of • the Galactic plane (Johnston et. al, 1992a) • It is the only known pulsar that has a young, massive, • non-degenerate, Be star companion (Johnston et. al, • 1992b) • Characteristic age: ~330 kyr • Period: ~48 ms • Orbital period: ~1237 days -- longest so far • Eccentricity: ~0.87 -- largest known • Periastron: 24 stellar radii (R*) Pulsar Workshop, 2009, NAOC
Companion: • SS 2883, B2e main sequence star • 10 solar mass, 6 solar radii • Equatorial velocity vsin(i) = 280 km/s and runaway • velocity of 80 km/s • A hot, tenuous polar wind: loss ~10-6 solar mass/yr • A cooler, high density, equatorial disk: 108—1010cm-3 near the star surface, falls off as power-law Hα emission at 20 R*,just inside the pulsar orbit (Johnston et al., 1994 ) Highly tilted with respect to the pulsar orbital plane PSR B1259-63 eclipse for ~40 days Pulsar Workshop, 2009, NAOC
PSR B1259-53 Wex DM Pulsar Workshop, 2009, NAOC
What’s Pulsar Timing? It measures the pulse arrival time: PSR B0329+54 T (second) Pulsar Workshop, 2009, NAOC
A rotational model is fitted to data: T is the time at the solar system barycenter • Factors that effect pulse arrival time: • pulsar rotation • pulsar position change • dispersion smearing • scattering • relativistic effect • orbital motion in binary system • earth movement The observed residuals: Pulsar Workshop, 2009, NAOC
Residual of position error Residual of p and pdot error Pulsar Workshop, 2009, NAOC
Interactions of PSR B1259-63 with its surroundings • Frictional drag from the disk: • Mass accretion: • spins-up or slows-down the pulsar, depends on the • relative size of Alfven radius and corotation radius • Spin-orbital coupling: • spin induced oblateness of the star implies additional 1/r3 • gravitational potential (quadrulpole gravitational • moment ), introduces precession of the orbital plane • Tidal effects with the main sequence B2e star: Pb, e, i Pulsar Workshop, 2009, NAOC
Steps at second periastron Pulsar Workshop, 2009, NAOC
Earlier Timing Solution by Wex et al. (1998): Data up to end of 1996, cover 1990 and 1994 periastrons. Three Solutions: 1. Timing noise 2. Spin-orbital coupling:Precession of the orbit Pulsar Workshop, 2009, NAOC
Observations and Analysis Details of the observation data spans. Data Preceding T+ T- No. of span Periastron (MJD) (d) (d) TOAs ---------------------------------------------------------------------------------------------------- 1990.1-1990.7 - -107 18 1990.7-1994.0 48124 171 20 187 1994.0-1997.5 49361 24 18 443 1997.5-2000.9 50597 16 52 237 2000.9-2003.5 51834 19 - 146 Altogether 1031 independent observations, obtained on 0.66, 1.4, 2.4, 4.8, 8.4, 13.6 GHz Pulsar Workshop, 2009, NAOC
●Standard profiles ●Pulse profile evolution Differing spectral index ●Alignment of profiles Outer edge Pulsar Workshop, 2009, NAOC
DM variation • Dispersion measure variations from 13 years of timing observation. • The offset is measured relative to the value of 146.8 pc cm-3. • A mean offset of -0.2±0.1 pc cm-3 from T+43 of 2000 periastron. Pulsar Workshop, 2009, NAOC
Timing Results A glitch near MJD 50691 (1997, August 30), 94 days after 1997 periastron. A glitch is a sudden jump in pulsar spin rate, with relative amplitude △ν/ν~10-9-10-6 Exponential decay with a assumed time scale of 100 days, we have: Pulsar Workshop, 2009, NAOC
Keplerian • fitting for and the five Keplerian orbital parameters. Plus the addition of: • (b) • (c)jumps in at each periastron; • (d)jumps in x at each periastron. • Residual: • 4.3, 4.7, 0.78, 0.46 ms Spin-orbital coupling Mass accretion Orbital jump Pulsar Workshop, 2009, NAOC
Discussion 1. Timing noise: jitter in the pulse arrival times Close to the value of other pulsars with similar frequency derivatives, so the long term timing noise is reasonably well removed n=-36.7 Reflect the high level of timing activity in this young pulsar Pulsar Workshop, 2009, NAOC
Discussion 2. Steps in Rotational Parameters Problems: △ν does not have a constant sign at each periastron Accretion: X-ray obs. show bow shock well outside the pulsar magnetosphere (Hirayama et al. 1999), require high density and/or high outflow velocity Require jumps in frequency derivative Pulsar Workshop, 2009, NAOC