forest fire simulation proposal n.
Skip this Video
Loading SlideShow in 5 Seconds..
Forest Fire Simulation Proposal PowerPoint Presentation
Download Presentation
Forest Fire Simulation Proposal

Forest Fire Simulation Proposal

138 Views Download Presentation
Download Presentation

Forest Fire Simulation Proposal

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Forest Fire Simulation Proposal Sophie Schneider, Gordon Read, Evan Holmes, Trevor Isner, Sami Anderson

  2. Introduction • Waldo Canyon Fire forced 11,000 people from their homes (Summer 2012) • Entire area was affected by higher temperatures and air pollution • Burn scars led to severe flooding the following year

  3. Waldo Canyon Fire

  4. Introduction • Wildfires may be better controlled with the use of simulations that can model behaviors • Allow us to react to real-world situations more effectively • Investigative Question: How does forest fire composition affect the behavior of forest fires in the Southern Colorado region?

  5. Variables

  6. Proposal • Simulation specifically designed for the Southern Colorado region • Funding would allow us to deepen the simulation to be more accurate • More tree types • Weather patterns • Access to servers with related information would be of use

  7. What is fire? Combustion • Fuel reacts with oxygen to release heat energy (exothermic reaction). • Gases break down due to heat and make new compounds (carbon dioxide, water, soot…) • Fuels can be solid, liquid or gas, however combustion only occurs between gasses. Fire Tetrahedron • Heat, fuel, oxygen, uninhibited chemical chain reaction • Creates heat to sustain flame • Redox reaction • Oxygen becomes reduced, fuel becomes oxidized

  8. How Fires Work Four Stages of Fire • Ignition: Fuel, oxygen and heat form together in a chemical reaction • Growth: Additional fuel ignites with the initial heat and flame. • Fully Developed: Fire has covered and consumed most of the fuel • Decay: Fire has consumed all fuel, causing temperatures to decrease, and eventually leads to a burn out. Heat Transfer • Radiation: The transfer of energy via waves (through space) • Convection: The transfer of heat energy due to the “physical movement” of hot air. • Conduction: The transfer of heat energy with material, itself. Most fires spread due to conduction

  9. How do forest fires start? • Human causes • 90% of wildfires caused by humans • Unattended campfires, burning of debris, discarded cigarettes • Intentional acts of arson • Natural causes • Volcanic eruptions • Lightning strikes • Unusually long-lasting hot lightning strikes • Currents of less voltage, but strikes occur for longer periods of time

  10. What are the types of plants in the Southern Colorado region? • Plants used in simulation: • Trees • Shrubs/undergrowth • There are many different tree and plant species common to Southern Colorado • Due to lack of funding, only three tree species and three shrubs will be highlighted.

  11. Tree Species

  12. Undergrowth

  13. What weather conditions affect the behavior of a forest fire? Temperature: • When underbrush receives solar radiation, it evaporates internal moisture, allowing them to be more susceptible to burning • Higher susceptibility to burning: more underbrush ignites faster, spreading fire quickly. • Afternoons are usually the hottest, and therefore the most likely time for fires to start or spread.

  14. What weather conditions affect the behavior of a forest fire? Wind: • Most unpredictable factor • Supplies fire with oxygen, giving it more energy • Stronger winds can push fire into a certain direction, accelerating it • Makes fuel (underbrush) dry faster by transporting moisture • Large fires can develop their own, very strong, wind patterns Spotting: • Embers from fire are picked up by wind and can land outside of fire area • Can start new fires or accelerate growth of fire • Usually the reason for fires crossing roads, rivers, etc.

  15. What weather conditions affect the behavior of a forest fire? Moisture: • Amount of water vapor in the air • Moisture absorbs heat from fire, making fuels harder to ignite • When air is saturated with moisture, moisture is released as rain • Greatly raises moisture levels in fuels • Helps extinguish fires

  16. How will the simulation be created? • Plant Class • Majority of actors • Two Sub-classes • Variables not applicable to both • Methods apply to all Class → Variables → Methods → Sub-class → Variables →

  17. How will the simulation be created? • Fire Class • Not in the original world • startType based on user Input • Has a chance to spot • Will remove the objects from the world • Might go out on its own Class → Variables → Methods →

  18. How will the simulation be created? • Very simple • Chance to block fire based on • thickness of river/lake • side in which fire approaches Class → Method →

  19. Hypothesis Based on preliminary research, we predict: If a simulation of a forest consisting of densely spaced trees featuring thin bark, shallow roots, low branches, and resinous wood in a dry, windy climate is ignited, then the simulation will demonstrate higher temperatures and a faster spread rate than a forest with thick bark, high moisture content, and mature trees because these characteristics are reflected in real-world wildfires.

  20. Conclusion • We ask for funding and access to information to help us expand upon our simulation to model real-world situations more accurately. • Research different variables (trees, weather conditions, distributions, etc.), running and testing the simulation, increase workforce so simulation is ready for this summer,... • Simulation would allow effective response to and reduced effects of future wildfires such as the Waldo Canyon Fire.

  21. Photo credits

  22. Bibliography All About Fire. (n.d.). Retrieved February 21, 2014, from National Fire Protection Association website: reporters-guide-to-fire-and-nfpa/all-about-fire Bonsor, K. (n.d.). How Wildfires Work: Weather's Role in Wildfires. Retrieved February 21, 2014, from website: Colorado's Major Tree Species. (n.d.). Retrieved February 21, 2014, from Colorado State University website: Cottrell, W. H., Jr. (2004). The Book of Fire. Missoula, MT: Mountain Press Publishing.

  23. Bibliography (cont.) Hix, E. (Ed.). (n.d.). Heat Transfer. Retrieved February 21, 2014, from Auburn website: Klett, J., Fahey, B., & Cox, R. (2008, July). Native Shrubs for Colorado Landscapes. Retrieved March 7, 2014, from Colorado State University website: Wildfire Causes. (n.d.). Retrieved February 21, 2014, from Fire and Aviation Management website: fire-in-depth/wildfire-causes.cfm Wildfires across Colorado. (2012, June 6). Retrieved February 21, 2014, from NASA website: colo-20120626.html