Download
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
8/6/2002 PowerPoint Presentation

8/6/2002

205 Views Download Presentation
Download Presentation

8/6/2002

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Lunar Sample Return via the Interplanetary Supherhighway EL2 Lander Lander Return Moon Earth Moon LL2 Lander Return LL2 Stable Manifold Insertion Lander Separation Orbiter EL1 Lunar Orbit AIAA/AAS Astrodynamics Specilaist Conference Martin.Lo@jpl.nasa.gov Min-Kun.Chung@jpl.nasa.gov JPL Caltech 8/6/2002

  2. Agenda • Lunar Sample Return Mission Overview • Baseline Mission Scenario • Lunar L2 Case (LL2) • Mission Performance Comparison

  3. Mission Overview • Goal: Collect and Return Lunar Samples to Earth • Aitken Basin on Backside of Moon, (180°, -57°) • Launch Combo, the Combined Flight System • Communications Orbiter • Desire Continuous Communications Coverage Between Earth and Lander Module • Lander/Return Module • Sample Collection in Sun, ~2 Weeks Available • Return to Earth (non-specific target)

  4. Key Results • Metric: Total DV of • Combo • Lander/Return Module • Communications Orbiter • Trade Time for Total DV • Best Case 1446 m/s Less than Conic Case • Baseline 1020 m/s Less than Conic Case

  5. LUNAR L1 GATEWAY EARTH L2 HALO ORBIT MOON LUNAR L1 HALO ORBIT LUNAR L2 HALO ORBIT EARTH Interplanetary Superhighway in the Earth’s Neighborhood • Collection of Invariant Manifolds of Quasiperiodic Orbits in the Solar System • Coupled Three Body Systems

  6. Key Concepts Used in the Paper • Lunar L2 Halo Link Earth to Lunar Backside • Colombo (L1) • Farquhar: Halo Orbits • Dynamical Systems Theory • Poincaré, Connelly, McGehee • Gomez, Jorba, Llibre, Martinez, Masdemont, Simó • Hiten-Like Transfers • Belbruno, Miller • Lo, Ross • Koon, Lo, Marsden, Ross • Heteroclinic Connection Theory • Barden, Howell • Koon, Lo, Marsden, Ross

  7. JPL LTool Team • Martin Lo Section 312 • Task Manager • Larry Romans Section 335 • Cognizant S/W Engineer (Marthematica Developer) • George Hockney Section 367 • S/W Architecture & Sys Engineer • Brian Barden Section 312 • Trajectory Design & Algorithms • Min-Kun Chung Section 312 • Astrodynamics Tools • James Evans Section 368 • Infrastructure S/W, Visualization Tools

  8. EL1 Moon • LL1 • LL2 Earth • EL2 Case LL2 : 1020 m/s Cheaper Than Conic BASELINE CASE

  9. EL1 Moon • LL1 • LL2 Earth • EL2 Case LL1 : 943 m/s Cheaper Than Conic

  10. EL1 Earth Moon • LL1 • LL2 • EL2 Case EL1 : 1446 m/s Cheaper Than Conic

  11. EL2 Moon Earth Lander Return EL1 LL2 Case: Direct Transfer to LL2 Lissajous Orbit • Lunar Transfer • LL2 Lissajous Orbit • Lunar Landing • Lander Return

  12. Lander Return Trans-Lunar Injection 3122 m/s at 6/14/09 Moon Earth 11/7/90 LL1 LL2 Earth 6/14/90 LL2 Insertion 570 m/s at 6/18/09 Lander Return LL2 Case: Trans-Lunar Phase

  13. Lander Return Lander Orbit Trans-Lunar Orbit Lander Return: 2424 m/s at 7/28/09 Moon LL2 LL1 Lander Touchdown: 2335 m/s at 7/17/09 LL2 Stable Manifold Insertion Orbiter Lander LL2 Departure: 35 m/s at 7/7/09 LL2 Case: Lunar Phase

  14. EL2 Moon Earth Lander Return EL1 LL2 Case: Earth Moon Rotating Frame

  15. Orbiter LL1 Earth Lander Return LL2 LL2 Case: EME2000 Inertial Frame

  16. Lander Return Earth LL1 EL2 LL2 Orbiter LL2 Case: Sun-Earth Rotating Frame

  17. LL2 Case:Mission Sequence & DV’s

  18. Lander Departs for Moon: 95 m/s Moon LL1 LL2 Moon LL1 Heteroclinic Connection Landing: 2330 m/s 8.5 days later LL1 Case: LL2 via LL1 • Insert into LL1 Stable Manifold • Heteroclinic Connection for Comm. Orbiter • Lunar Landing from LL1

  19. LL1 Case: Mission Sequence & DV’s LL2 Case

  20. EL1 LOI 60 m/s LL1 LOI 13.2 m/s Earth Launch 3193 m/s EL1 Case: LL2 via Earth L1 • Reduce LL2 LOI DV: Launch to EL1 Fall to LL2 • Once There, Follows LL2 Case FAIR/DART Trajctory EL1 EL2

  21. EL1 Case: Mission Sequence & DV’s Reduction by Order of Magnitude LL2 Case

  22. Conic Case (S. Williams, JPL) • Conic Trans-Lunar Orbit • Lander in 100-km Lunar Parking Orbit • Orbiter in Highly Elliptical Orbit • 100x8700 km, 12 hr Period

  23. Conic Case (S. Williams, JPL)

  24. Libration Point Mission Lowers DV • Saves Up to 1446 m/s! • Provides Continuous Communication • Trade DV for Time

  25. References • Barden, Howell, Formation Flying in the Vicinity of Libration Point Orbits, AAS 98-169, Monterey, CA, 2/98 • Barden, Howell, Dynamical Issues Associated with Relative Configurations of Multiple Spacecraft Near the Sun-Earth/Moon L1 Point, AAS 99-450, Girdwood, Alaska, 8/99 • Gomez, Masdemon, Simo, Lissajous Orbits Around Halo Orbits, AAS 97-106, Huntsville, Alabama, 2/97 • Howell, Barden, Lo, Applications of Dynamical Systems Theory to Trajectory Design for a Libration Point Mission, JAS 45(2), April 1997, 161-178 • Howell, Marchand, Lo, The Temporary Capture of Short-Period Jupiter Family Comets from the Perspective of Dynamical Systems, AAS 00-155, Clearwater, FL, 1/2000 • Koon, Lo, Marsden, Ross, Heteroclinic Connections between Lyapunov Orbits and Resonance Transitions in Celestial Mechanics, to appear in Chaos

  26. References • Koon, Lo, Marsden, Ross, The Genesis Trajectory and Heteroclinic Connections, AAS99-451, Girdwood, Alaska, August, 1999 • Koon, Lo, Marsden, Ross, Shoot the Moon, AAS00-166, Clearwater, Florida, January, 2000 • Lo, The InterPlanetary Superhighway and the Origins Program, IEEE Aerospace2002 Conference, Big Sky, MT, February, 2002 • Lo et al., Genesis Mission Design, AIAA 98-4468, Boston, MA, August, 1998 • Serban, Koon, Lo, Marsden, Petzold, Ross, Wilson, Halo Orbit Correction Maneuvers Using Optimal Control, submitted to Automatica, April, 2000 • Scheeres, Vinh, Dynamis and Control of Relative Motion in an Unstable Orbit, AIAA Paper 2000-4135, August, 2000